
PEDAGOGICAL TOOLS FOR SYSTEM

SOFTWARE AND OPERATING SYSTEM

COURSES USING XV6 KERNEL

A Project Report

Submitted by

Prashant Gonarkar 111003026

Dhanesh Arole 111003044

Prasannjit Gondachwar 111003039

in partial fulfilment for the award of the degree

of

B.Tech. Computer Engineering

Under the guidance of

Prof. Abhijit A. M.

College of Engineering, Pune

DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION TECHNOLOGY,

COLLEGE OF ENGINEERING, PUNE-5

May, 2014

DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION TECHNOLOGY,

COLLEGE OF ENGINEERING, PUNE

CERTIFICATE

Certified that this project, titled “PEDAGOGICAL TOOL FOR SYSTEM SOFT-

WARE AND OPERATING SYSTEM COURSES USING XV6 KERNEL” has been suc-

cessfully completed by

Prashant Gonarkar 111003026

Dhanesh Arole 111003044

Prasannjit Gondachwar 111003039

and is approved for the partial fulfilment of the requirements for the degree of “B.Tech.

Computer Engineering”.

SIGNATURE SIGNATURE

Prof. Abhijit A.M. Dr. J. V. Aghav

Project Guide Head

Department of Computer Engineering Department of Computer Engineering

and Information Technology, and Information Technology,

College of Engineering Pune, College of Engineering Pune,

Shivajinagar, Pune - 5. Shivajinagar, Pune - 5.

Abstract

The current widely used production level system software utilities such as GNU compiler,

linker, interpreter and C library have been in active development for almost last 3 decades.

But with the rise of Linux Kernel and GNU toolchain based operating systems in mid

1990s, these two softwares got evolved with strong mutual cohesion. System softwares

such as GCC, ld and Linux kernel are heavily dependant on each other such that Linux

kernel can only be compiled using GCC bundle where GCC runs on standard libc

and only GNU linkage editor can link the programs generated by GCC. All of these

tools carry out critical functionalities of operating system such as memory management,

file system, resource management, access control and synchronization etc. So inherent

required code for this functionality is highly optimised and written by leveraging several

rare language features which makes these softwares very much complex. As a result it

is always challenging job for educators to design a semester long, fundamental course

of operating system covering theoretical and practical aspects of above mentioned tools.

This project is aimed at delineating a framework for development of fresh operating

system whose essential component should include platform specific C library, linkage

editor and interpreter.

As a part of this project we demonstrated working of our proposed framework by

porting an interpreter named PicoC, C library named dietlibc and small in house linkage

editor to Xv6 operating system. This report will elaborate on strategies to be used while

porting system softwares to new kernel as well as on comprehensive measures that can

be used in undergraduate as well as graduate courses of operating systems and system

programming for better understanding of their basic functionality in pedagogy purposes.

Contents

List of Tables ii

List of Figures iii

List of Symbols iv

1 Introduction 1

1.1 Need of developing a prototype Operating System: 1

1.2 Components of education OS: . 2

1.3 Reason for porting Interpreter in education OS: 3

1.4 Reason for porting standalone Linkage editor to OS: 4

1.5 Reason for designing built in code review utilities: 5

2 Literature Survey 6

2.1 Current educational purpose operating systems 6

2.1.1 XINU . 7

2.1.2 SOS . 7

2.1.3 linux-0.01 . 7

2.1.4 Bluefire OS . 8

2.1.5 MINIX . 8

2.1.6 plan 9 . 8

1

2.1.7 xv6 . 9

2.2 Components of prototype operating systems 9

2.2.1 Introduction to Picoc . 9

2.2.2 Introduction to dietlibc . 10

3 Design 11

3.1 Design of platform for Picoc interpreter 12

3.1.1 Workflow of Picoc . 12

3.1.2 Adding library support for Picoc 13

3.1.3 Building Picoc interpreter in xv6 13

3.2 Design of Linkage editor for xv6 . 13

3.2.1 static linking and dynamic linking 14

3.2.2 Algorithm for symbol resolution used in linker 14

3.2.3 Algorithm used for relocation in linker 15

3.3 Filesystem modifications . 18

3.3.1 Original xv6 structure . 18

3.3.2 Changes made to increase max file size limit 19

3.4 Standard library in C . 20

4 Implementation 21

4.1 Porting Picoc to xv6 . 21

4.1.1 New functions added to port Picoc to xv6 21

4.1.2 Library of Picoc . 22

4.2 Increasing Max filesize limit of filesystem in xv6 22

4.2.1 Original block allocator in xv6 filesystem 22

4.2.2 changes made to on-disk Inode structure 23

4.2.3 Modified block allocation strategy 24

4.3 Linkage editor . 24

4.3.1 Implementation of static linker in xv6 24

4.3.2 Symbol resolution . 25

4.3.3 Relocation . 25

5 Assignments for Operating system course 27

5.1 Assignment 1: Adding library function with corresponding system call . . 27

5.1.1 Problem Statement . 27

5.1.2 Aim of assignment . 28

5.1.3 Solution . 28

5.1.4 Code . 29

5.2 Assignment 2: Scheduling . 30

5.2.1 Problem Statement: . 30

5.2.2 Aim of assignment: . 30

5.2.3 Solution: . 30

5.2.4 Evaluation of different Scheduling schemes: 32

5.3 Assignment 3: Implementing semaphores in xv6 33

5.3.1 Problem Statement . 33

5.3.2 Aim of assignment . 33

5.3.3 Solution . 33

5.3.4 Code . 33

5.4 Assignment 4: Process Memory Swap . 34

5.4.1 Problem statement: . 34

5.4.2 Aim of assignment: . 35

5.4.3 Solution: . 35

5.4.4 Design of Swapper process . 36

5.5 Assignment 5: Modification to linker . 37

5.5.1 Problem Statement (scope resolution) 37

5.5.2 Aim of assignment: . 37

5.5.3 Solution: . 37

5.5.4 Problem Statement (order of object file argument) 38

5.5.5 Aim of assignment . 38

5.5.6 Solution . 38

5.6 Assignment 6: File system modification 39

5.6.1 Problem Statement: . 39

5.6.2 Aim of assignment: . 39

5.6.3 Solution: . 39

6 Conclusions and Future work 41

6.1 Framework for porting system softwares to fresh kernel 41

6.2 Future work . 43

6.2.1 complete standalone compiler bundle like tcc 43

6.2.2 prototype network stack for xv6 43

6.3 MOOC . 43

A Library Functions 45

B Linking script 47

C Source Code for New Library Functions Added 48

D Source Code for Newly Designed Linker 52

E Object File Definitions 57

F New In memory Inode Structure of xv6 File System 58

List of Tables

A.1 Mathematical Functions and their usage 45

A.2 Standard i/o Library Functions and their usage 46

ii

List of Figures

3.1 Original file system . 19

3.2 Modified file system . 20

4.1 Linker output for missing symbol test case 26

4.2 Linker output for positive test case . 26

5.1 Assignment 3:Solution . 28

iii

List of Symbols

iv

Chapter 1

Introduction

1.1 Need of developing a prototype Operating System:

After great success of Linux kernel, more and more developers (nearly 20391 for v3.5)

across the world are finding greater interest in the particular model adopted for it’s

development. Also Operating System is conventionally regarded as the most difficult

as well as intriguing piece of code. It is been observed through some of the formal

methods of public opinion gathering and social network data that it is the most sought

after software and college level course in undergraduate programs of computer science

engineering. But rather a contradictory result shows that average age group of latest

Linus kernels contributors is 36 years which is much more than expected age of 25 years.

A deep inquiry into this fact poses a several question regarding the current method of

teaching OS at entry level college courses.

Most modern Kernels provide many more system calls and many more kinds of services

but due to their production values it is almost impossible to get the real crux of how these

systems have been implemented in their code base. As a result though student grasps

the theoretical knowledge about OS concepts, one remains marginally aloof of the core

implementation details which restraints him from participating in active OS development.

1

Hence most fundamental aim of this project is to develop small prototype Unix like OS

that can be essentially used for education purposes. The main reason behind developing

such OS is to help wide spread student community in understanding the basics of OS

through practical demonstrations. Such OS can be used by educators around the world

for teaching basic working of system softwares and their interaction with different OS

components.

Hence considering this we have developed a small OS which can be used and easily

learnt too. But only developing such small OS wouldn’t suffice. As a result the important

part of this project is to develop some built in tool in such small educational OS to give

real time insight of it. And to produce a comprehensive course material containing the

documentation, tutorials and set of assignments that will probably give more deeper

insight into code base of this OS.

1.2 Components of education OS:

The critical issue in this project is to decide which softwares to be ported into such

educational purpose OS. Because considering the prime aim of this project it is very

much necessary to maintain the overall size of code base relatively small enough for

understanding of student level developers. In every OS, language processing activities

arise due to the differences between the manner in which a software designer expresses

the ideas and way computer instructions are understood by computer hardwares. So

there is tight binding between system softwares which convert high level programming

language instructs into machine language and OS which is responsible for executing that

program. Hence this OS includes a small interpreter named PicoC and a standalone

linkage editor developed specifically for this purpose.

1.3 Reason for porting Interpreter in education OS:

During the software development cycle, programmer make frequent changes to source

code. When using a compiler, each time a change is made to the source, they must wait

for the compiler to translate the altered source files and link all of the binary code files to-

gether before the program can be executed. The larger the program , the longer the wait.

By contract a programmer using an interpreter does a lot less waiting, as the interpreter

usually just needs to translate the code being worked on to an intermediate representa-

tion (or in other words Not translate it at all), thus requiring much less time before the

changes can be tested since effects are evident upon saving the source and reloading the

program. Interpreting a language given implementations some additional flexibility over

compiled implementations. Features that are easier to implement in interpreters than in

compilers include:

1. Platform Independence

2. Reflection and reflective use of evaluator

3. Dynamic typing

4. Smaller executable program size (since implementations have flexibility to choose

instruction code)

5. Dynamic Binding.

Also in recent times, rise of agile software development movement and cross platform

language implementation, languages such as Java and Python have become by default

choice of many software architects because of their comparatively lesser time of develop-

ment and source readability.

1.4 Reason for porting standalone Linkage editor to OS:

1. Understanding linkers will help you build large programs.Programmers who build

large programs often encounter linker errors caused by missing modules, missing li-

braries, or incompatible library versions. Unless you understand how a linker resolves

references, what a library is, and how a linker uses a library to resolve references,

these kinds of errors will be baffling and frustrating.

2. Understanding linkers will help you avoid dangerous programming errors The deci-

sions that Unix linkers make when they resolve symbol references can silently affect

the correctness of your programs. Programs that incorrectly define multiple global

variables pass through the linker without any warnings in the default case. The re-

sulting programs can exhibit baffling run-time behavior and are extremely difficult

to debug. We will show you how this happens and how to avoid it.

3. Understanding linking will help you understand how language scoping rules are

implemented.For example, what is the difference between global and local variables

?

4. Understanding linking will help you understand other important systems concepts.

The executable object files produced by linkers play key roles in important sys-

tems functions such as loading and running programs, virtual memory,paging, and

memory mapping.

5. Understanding linking will enable you to exploit shared libraries. For many years,

linking was considered to be fairly straightforward and uninteresting. However,

with the increased importance of shared libraries and dynamic linking in modern

operating systems, linking is a sophisticated process that provides the knowledgeable

programmer with significant power. For example, many software products use shared

libraries to upgrade shrink-wrapped binaries at run time. Also, most Web servers

rely on dynamic linking of shared libraries to serve dynamic content.

1.5 Reason for designing built in code review utilities:

As mentioned above the main purpose of this project is to make users aware of complex

functionality of system softwares that they are using. Hence for that reason we have

embedded several built in hooks into current code base of Xv6 which gives user the

step by step information of internal work flow of any given utility like linker, loader or

interpreter. This enables her to track down the actual source of that utility very easily

and modify it accordingly. This object code review utilities are very much useful for

making best use of assignment section of this report.

Chapter 2

Literature Survey

2.1 Current educational purpose operating systems

We have studied some of the current available education purpose operating system OSes

like XINU,sos,linux kernel v0.01,Bluefire OS,MINIX,jos, Plan 9. While studying all these

operating systems we have followed guidelines based on following parameters:

1. language code should be ANSI C.

2. should not have more that 15000 lines of code.

3. should follow one of the measure unix standard specifications.

4. should be open source and able to compile on qemu emulator in major linux distri-

butions.

5. should have past history of being used for pedagogical purposes.

6. should have well documented manual.

A comprehensive study of each of these operating system is presented below.

6

2.1.1 XINU

XINU [10] stands for Xinu Is Not Unix. Actually it shares concepts and even names with

Unix, but the internal design differs completely. Xinu is a small, elegant operating system

that supports dynamic process creation, dynamic memory allocation, network communi-

cation, local and remote file systems, a shell and device-independent I/O functions. As

XINU does not follow any UNIX standards, it falls apart from mainstream of operating

system pedology.

2.1.2 SOS

SOS [9] Simple Operating System, is an operating system kernel which aims at being

simple to understand and that nonetheless covers concepts and functionalities of modern

OSes. The OS code comes with a batch of articles published in the french magazine

called Linux Magazine France, during 2004 and 2006. The main problem with SOS is

most part of documentation is available in french and most of concepts are implemented

in a standalone fashion, apart from standard UNIX prototype.

2.1.3 linux-0.01

[4] This is earliest version of Linux kernel release in early 1991. It comprise of 8000 lines of

code only. This can be the best tool for novice developers to learn Linux kernel because

current code base has evolved from this tiny release v0.01. But the problem with this

vanilla kernel is dependency and compiling environment has been changed significantly

since 1991. So this linux-0.01 version can not be complied on today’s modern compilers.

Even though it was written considering GCC, but GCC itself has changed a lot since

1991. This difficulties make linux-0.01 unsuitable for use of pedagogy.

2.1.4 Bluefire OS

Bluefire[1] is a didactic OS that was created to show every step of creating a bootstrapping

OS. It’s approximately 15,000 lines of code. It’s include primary graphics which is been

shown while booting steps. This operating system lacks of some core functionalities like

synchronization, standard memory management. The design of this operating system is

quiet different from standard UNIX prototypes.

2.1.5 MINIX

MINIX [5]is a free, open-source, operating system designed to be highly reliable, flexible,

and secure. It is based on a tiny microkernel running in kernel mode with the rest of the

operating system running as a collection of isolated, protected, processes in user mode.

MINIX incorporates microkernel architecture which is difficult to understand for novice

students. Also current MINIX version is now become a high end operating system and

it’s no more a pedagogical operating system now.

2.1.6 plan 9

Plan 9 [8] is a research system developed at Bell Labs starting in the late 1980s. Its

original designers and authors were Ken Thompson, Rob Pike, Dave Presotto, and Phil

Winterbottom. Plan 9 is an operating system kernel but also a collection of accompanying

software. The bulk of the software is predominantly new, written for Plan 9 rather than

ported from Unix or other systems. The main problem with this operating system, as it

has been evolved since 1980s, it has become a full fledge operating system instead of just

a research system.

2.1.7 xv6

xv6 is a simple unix-like teaching operating system developed at MIT [13]. xv6 is re-

implementation of Dennis Ritchies and Ken Thompsons Unix Version 6 (v6). xv6 is

implemented in ANSI C for an x86 based multiprocessors. Xv6 is simple enough to teach

operating system walking through its code in a semester. xv6 has implemented most of

modern operating system core functionalists which makes easier to start look through in

oper- ating system code for a newbie. Xv6 is around 8000 lines code yet still contains the

important concepts and organization of Unix. Current users of xv6 include MIT[6],Yale

[11],Columbia university, IIT Delhi.

2.2 Components of prototype operating systems

The selected operating system should have one language process system process either

interpreter or compiler. It should also have a minimal library on top of which utilities

can run. We have studied such exiting solutions.

2.2.1 Introduction to Picoc

PicoC [7]is a very small C interpreter for scripting. It was originally written as the

script language for a UAV’s on-board flight system. It’s also very suitable for other

robotic, embedded and non-embedded applications. The core C source code is around

4500 lines of code. It’s not intended to be a complete implementation of ISO C but it

has all the essentials. When compiled it only takes very little code space and is also very

sparing of data space. This means it can work well in small embedded devices. It’s also

a fun example of how to create a very small language implementation while still keeping

the code readable. The overall structure and it’s open source nature is the key reason to

choose Picoc as a prototype interpreter in current xv6 os.

2.2.2 Introduction to dietlibc

Dietlibc [2]is a C standard library released under the GNU General Public License Version

2, but there are also commercial licences available. It was developed with the help of about

100 volunteers by Felix von Leitner with the goal to compile and link programs to the

smallest possible size. Dietlibc was developed from scratch and thus only implements the

most important and commonly used functions. It is mainly used in embedded devices.

Dietlibc is easy to build on linux operating systems and have quite flexible licensing policy

which makes it the best choice for using this as a standard library in current xv6 kernel.

Chapter 3

Design

As briefly explained in first 2 chapters that the main problem with today’s production

level system softwares is that their core logic is most of the time hard to grasp for student

and novice developers because of amount of error checking code that is added into them.

Though various hooks and verbose output options are embedded into them, their main

intention is to help developers to debug new source code added into the current codebase

rather than learning the original one. So while establishing a framework for improved

learning experience of operating system and system software courses, we need to focus

on the various stages through which these softwares pass through in order to generate

final output. In case of operating system understanding such verbose output helps in

understanding various modular parts of operating systems. So that if some new driver

or let’s say some new functionality is to be added into current production level software

then this comprehensive knowledge of different modular part will help them in targeting

source code of that particular subsystem.

This following section will provide list of such utilities or tools that we have included

in xv6 considering the general difficulties faced by students. This list will particularly

emphasize on those concepts that are traditionally missed out from most of the operating

system textbooks but are of great importance.

11

3.1 Design of platform for Picoc interpreter

3.1.1 Workflow of Picoc

The basic outline of how Picoc interprets the code can be described briefly as follows:

1. It first Allocates enough space on heap for loading given program in memory.

2. It then tokenizes the given source code into different categories such as variables,

function declarations, function definitions etc.

3. It then parses the given source code as per the language grammar to find out if there

are any early stage syntax errors.

4. While parsing the source code it parses one statement at a time, and identifies dif-

ferent types of tokens in given statement.It also associates proper semantic meaning

to those tokens.

5. If while parsing a given statement, it is found that a call to external function is

made then definition of that function is first searched in local as well as global list

of built-in function libraries.

6. Once that function definition is found, a wrapper for that particular library function

is called. After some prepossessing, a standard library call inside that wrapper then

does the rest of work and returns back. Hence control of flow goes back to interpreter

parser engine again.

For example, if a call to printf is there in the source of given program then in first

step Picoc tokenizes it as Cprintf. In second step it is associated with semantic meaning

of function call to it. In third step actual definitions of Cprintf is searched in an list of

by default included library files. Here in this case this is in stdio.c. So a call to Cprintf

function from stdio.c will be replaced in place of printf. The implementation of Cprintf

will then make a call to standard library version of Printf.

3.1.2 Adding library support for Picoc

Any intermediate stages of interpreter processing involves many crucial functionalities

such as tokenization, symbol generation, semantic linking etc. These all functionalities

make use of many of the standard string processing functions such as strtok, strlen,

strncmp etc. But currently when we build xv6 kernel these functions are not there in it’s

standard C library. Hence firstly we have implemented all of these functions specific to

xv6.

3.1.3 Building Picoc interpreter in xv6

Right now Picoc can only be build using GCC compiler bundle. As xv6 doesn’t have

that right now we have used following approach for building this interpreter.

1. First Picoc is built by giving -C option to GCC in standard Linux environment.

This option creates relocatable object file of final executable.

2. This relocatable executable of Picoc is then linked with the standard library of xv6.

So this arrangement makes sure that all the relocatable files are produced by GCC

but are finally linked against library provided in xv6.

3. While linking these relocatable files against xv6’s standard library all the function

definitions that are required or functions which are called by Picoc but whose defi-

nition is not found in current library have to be added to current library.

3.2 Design of Linkage editor for xv6

During designing a built-in linker there is one crucial question to be tackled is of deciding

type of linker to be built. There are two main types of linkers that are static and dynamic

linkers.

3.2.1 static linking and dynamic linking

In static linking, linker copies all of the library routines used in the program in executable

image. This requires more memory space for every program than dynamic linking. But it

is to accommodate and doesn’t require extensive kernel support while loading a program

in memory. It also doesn’t require run-time library version to be available in memory all

the time during running of program.

Whereas in dynamic linking only name of shared library is placed in executable image.

Actual linking with the library routines is not performed at compile time. All such shared

libraries are placed in memory at some predefined address space. So when the program

is run it can refer to those routines even though they are not part of it’s final executable.

[3]

Though dynamic linking is more advantageous and is the modern day de-facto stan-

dard, we have designed static linker for xv6. This choice is made so that original kernel

code of xv6 remains simple and easy to read. Also another aspect of dynamic linking is

that it requires some complex memory management and process management schemes

that will make allow two or more processes two share same piece of common code. So

by abiding to basic principle of this project which aims at readability of source code we

have opted for static linker in this version of xv6. This is done so that student will easily

get hands on experience of tweaking source code of linker without much hassle. Refer

assignment sections.

3.2.2 Algorithm for symbol resolution used in linker

During the symbol resolution phase, the linker scans the relocatable object files from left

to right in the same sequential order that they appear on the compiler drivers command

line. (The driver automatically translates any .c files on the command line into .o files.)

During this scan, the linker maintains a set E of relocatable object files that will be

merged to form the executable, a set U of unresolved symbols (i.e., symbols referred to,

but not yet defined), and a set D of symbols that have been defined in previous input

files. Initially, E, U , and D are empty.

1. For each input file f on the command line, the linker determines if f is an object file

or an archive. If f is an object file, the linker adds f to E, updates U and D to reflect

the symbol definitions and references in f , and proceeds to the next input file.

2. If f is an archive, the linker attempts to match the unresolved symbols in U against

the symbols defined by the members of the archive. If some archive member, m,

defines a symbol that resolves a reference in U , then m is added to E, and the

linker updates U and D to reflect the symbol definitions and references in m. This

process iterates over the member object files in the archive until a fixed point is

reached where U and D no longer change. At this point, any member object files

not contained in E are simply discarded and the linker proceeds to the next input

file.

3. If U is nonempty when the linker finishes scanning the input files on the command

line, it prints an error and terminates. Otherwise, it merges and relocates the object

files in E to build the output executable file.

3.2.3 Algorithm used for relocation in linker

Compilers and assemblers generate code and data sections that start at address 0. The

linker relocates these sections by associating a memory location with each symbol defini-

tion, and then modifying all of the references to those symbols so that they point to this

memory location. Relocation consists of two steps:

Relocating sections and symbol definitions

In this step, the linker merges all sections of the same type into a new aggregate section

of the same type. For example, the .data sections from the input modules are all merged

into one section that will become the .data section for the output executable object file.

The linker then assigns run-time memory addresses to the new aggregate sections, to each

section defined by the input modules, and to each symbol defined by the input modules.

When this step is complete, every instruction and global variable in the program has a

unique run-time memory address.

Relocating symbol references within sections

In this step, the linker modifies every symbol reference in the bodies of the code and

data sections so that they point to the correct run-time addresses. To perform this step,

the linker relies on data structures in the relocatable object modules known as relocation

entries, which we describe next.

relocation entries

When an assembler generates an object module, it does not know where the code and data

will ultimately be stored in memory. Nor does it know the locations of any externally

defined functions or global variables that are referenced by the module. So whenever

the assembler encounters a reference to an object whose ultimate location is unknown,

it generates a relocation entry that tells the linker how to modify the reference when it

merges the object file into an executable.

relocation types

ELF defines 11 different relocation types, some quite arcane. We are con- cerned with

only the two most basic relocation types

R 386 PC32:

Relocate a reference that uses a 32-bit PC-relative address. Recall from Section 3.6.3

that a PC-relative address is an offset from the current run-time value of the program

counter (PC). When the CPU executes an instruction using PC-relative addressing, it

forms the effective address (e.g., the target of the call instruction) by adding the 32-bit

value encoded in the instruction to the current run-time value of the PC, which is always

the address of the next instruction in memory.

R 386 32: Relocate a reference that uses a 32-bit absolute address. With absolute

addressing, the CPU directly uses the 32-bit value encoded in the instruction as the

effective address, without further modifications.

1 f o r each s e c t i o n s {

f o r each r e l o c a t i o n entry r {

3 /∗ ptr to r e f e r e n c e to be r e l o c a t ed ∗/

p t r f o r mod i f y = s s e c t i o n s t a r t + r . o f f s e t ;

5

/∗ Relocate a PC r e l a t i v e r e f e r e n c e ∗/

7 i f (r . type == R 386 PC32) {

/∗ r e f s run−time address ∗/

9 r e f addr = ADDR(s s e c t i o n s t a r t) + re f addr ;

∗ p t r f o r mod i f y = (ADDR(r e l o c en t r y r s ymbo l) +

11 (∗ p t r f o r mod i f y − p t r f o r mod i f y)) ;

}

13 /∗ Relocate an abso lu t e r e f e r e n c e ∗/

i f (r e l o c a t i o n e n t r y . type == R 386 32)

15 ∗ p t r f o r mod i f y = (ADDR(r e l o c e n t r y r . symbol) + ∗ p t r f o r mod i f y) ;

}

17 }

3.3 Filesystem modifications

Originally xv6 operating system would used to support at max 64 KB of file size. In

order to port new linker and other system utilities to it we need to extend the filesize

limit of this structure. Following section will give an overview of underlying filesystem

structure along with the required changed that are to be done in order to maximize max

file size to 8MB.

3.3.1 Original xv6 structure

The file system must have a plan for where it stores inodes and content blocks on the

disk. To do so, xv6 divides the disk into several sections. The file system does not use

block 0 (it holds the boot sector). Block 1 is called the superblock; it contains metadata

about the file system (the file system size in blocks,the number of data blocks, the number

of inodes, and the number of blocks in the log). Blocks starting at 2 hold inodes, with

multiple inodes per block. After those come bitmap blocks tracking which data blocks in

use. Most of the remaining blocks are data blocks, which hold file and directory contents.

The blocks at the end of the disk hold a log that is part of the transaction layer. As a

result the max size of any file on this filesystem can’t execed 70kB. This can be given by

below formula:

max file size = [NDIRECT * BSIZE] + [NINDIRECT * BSIZE]

which becomes 6KB + 64KB = 70 kB.

where NDIRECT is the number of direct blocks which is 12. BSIZE is size of each Block

on disk 512 Bytes. NINDIRECT is number of indirect blocks which is currently 512/4 i.e.

128. The original file system is shown in figure 3.1

Figure 3.1: Original file system

3.3.2 Changes made to increase max file size limit

The size of max file size of every inode can be increased by adding more number of

NINDIRECT blocks to current implementation of filesystem. So as to increase max file size

to 8MB we added 1 double indirect block in the inode’s on disk structure. Details of code

base changes are discussed in implementation section. The double indirect block is block

whose every entry represents a block address of another block. Each entry of every such

block represents the block address where actual data is stored. So this gives more space

to every inode.

But to maintain the overall memory size of inode structure we have cut down 1 NDI-

RECT block from disc inode content. So that max filesize in modified filesystem can be

given as:

max file size = [NINDIRECT * BSIZE + NDINDIRECT * NINDIRECT * BSIZE]

which become 8 MB + 64KB 8MB.

The modified file system is shown in figure 3.2

DATA

DATADATA

DATA DATA

DATA

DATA

DATA

ADDRESS 1

ADDRES 128

ADDRESS 1

ADDRESS 128

ADDRESS 1

ADDRESS 128

ADDRESS 1

ADDRESS 128

SINGLE INDIRECT

DOUBLE INDIRECT

ADDRESS 11

TYPE

MINOR

MAJOR

NLINK

SIZE

ADDRESS 1

ADDRESS 2

DINODE

Figure 3.2: Modified file system

3.4 Standard library in C

The current version of xv6 uses a static library. All of the library functions are made

part of kernel. It doesn’t make use of library archives. If an application wants make use

of these library routines then it has to be built by using a shell script given in Appendix

B. There are two options while adding these definitions in current library. First is to

implement these functions by own or second one is to use some already existing POSIX

standard library. Here in this case we have used a library named dietlibc. List of functions

that are ported to current library of xv6 which are borrowed from dietlibc can be found

Appendix A.

Chapter 4

Implementation

4.1 Porting Picoc to xv6

4.1.1 New functions added to port Picoc to xv6

Once Picoc is invoked it reads an input file through FILE structure mechanism. This

function of reading original source file is done by PicocPlatformReadFile(). Similarly to

generate intermediate files or final output file it makes an extensive use of functions such as

fprintf(), sprintf(), fputs().As it makes use of these functions such as fopen(),

fread(), fclose() we have implemented these functions in current xv6 library. As

mentioned above Picoc can handle the various data types such as INT,FLOAT,CHAR *

etc. So to perform arithmetic operations on data types such as float and double it

needs to make use of complex exponential operations. For example, while printing float

datatype to standard output it calls PrintFP() which uses two mathematical functions

Pow() and exp(). Hence these two functions are also ported to current version of Xv6.

Their implementations are borrowed from dietlibc.

21

4.1.2 Library of Picoc

Considering the general work flow of Picoc as explained in chapter 3. For providing ap-

propriate environment to Picoc we have provided complementing sets of library functions

whose wrappers are supported by Picoc during run time. In picoc currently we have just

provided limited API that includes following functions:

1. printf

2. scanf

3. getchar

4. putchar

5. strcmp

6. strlen

7. strlen

along with the support to standard data types such as int,double,float,char etc. When

an instance of picoc is running it shows output at different stages of interpretation like

symbol table generation, tokenization and library call wrappers. The main reason to

limit the library API to such small scale so that it will create a scope for students to

understand the current structure and add further functionality into it.

4.2 Increasing Max filesize limit of filesystem in xv6

4.2.1 Original block allocator in xv6 filesystem

File and directory content is stored in disk blocks, which must be allocated from a free

pool. xv6s block allocator maintains a free bitmap on disk, with one bit per block. A

zero bit indicates that the corresponding block is free; a one bit indicates that it is in use.

The bits corresponding to the boot sector, superblock, inode blocks, and bitmap blocks

are always set [12]. The block allocator provides two functions: The first one is balloc

it allocates a new disk block, and second one is bfree which frees a block. Balloc starts

by calling readsb to read the superblock from the disk (or buffer cache) into sb. balloc

decides which blocks hold the data block free bitmap by calculating how many blocks are

consumed by the boot sector, the superblock, and the inodes (using BBLOCK). The loop

considers every block, starting at block 0 up to sb.size, the number of blocks in the file

system. It looks for a block whose bitmap bit is zero, indicating that it is free. If balloc

finds such a block, it updates the bitmap and returns the block. The race that might

occur if two processes try to allocate a block at the same time is prevented by the fact

that the buffer cache only lets one process use a block at a time. Bfree finds the right

bitmap block and clears the right bit.

4.2.2 changes made to on-disk Inode structure

The original on-disk inode structure, struct dinode, contains a size and an array of block

numbers. The inode data is found in the blocks listed in the dinodes addrs array. The

first NDIRECT blocks of data are listed in the first NDIRECT entries in the array; these

blocks are called direct blocks. The next NINDIRECT blocks of data are listed not in the

inode but in a data block called the indirect block. The last entry in the addrs array gives

the address of the indirect block. Thus the first 6 kB (NDIRECTBSIZE) bytes of a file

can be loaded from blocks listed in the inode, while the next 64kB (NINDIRECTBSIZE)

bytes can only be loaded after direct blocks are completely filled.

In extension to this we have added one more NDINDIRECT block to current inode

structure. Each entry in this block represents block address of another block. Each entry

of such blocks gives address of another block which actually stores data. Now the main

task is to allocate blocks from this entry. This is handled by modified block allocation

strategy explained in following section. See Appendix F for further detail.

4.2.3 Modified block allocation strategy

The function bmap manages the representation. So that higher-level routines such as

readi and writei can interact with in memory inode structure. Bmap returns the disk

block number of the n’th data block for the inode ip. If ip does not have such a block

yet, bmap allocates one. The function bmap begins by picking off the easy case: the

first NDIRECT blocks are listed in the inode itself. The next NINDIRECT blocks are

listed in the indirect block at ip.addrs[NDIRECT]. Bmap reads the indirect block and

then reads a block number from the right position within the block. If the block number

exceeds NDIRECT+NINDIRECT, because of new changes in filesystem now it will try to find

that data block in ip.addr[NDINDIRECT]. Hence it gives filesystem wider length. See

Appendix F for inode structure.

4.3 Linkage editor

4.3.1 Implementation of static linker in xv6

Static linkers such as the Unix ld program take as input a collection of relocatable object

files as a command-line arguments and generate as output a fully linked executable object

file that can be loaded and run. The input relocatable object files consist of various code

and data sections. Instructions are in one section, initialized global variables are in an-

other section, and uninitialized variables are in yet another section. A linker concatenates

blocks together, decides on run-time locations for the concatenated blocks, and modifies

various locations within the code and data blocks. Linkers have minimal understanding

of the target machine. The compilers and assemblers that generate the object files have

already done most of the work.

Implementation of new linker in xv6

The newly modified linker first reads the given object files and for each object it generates

two lists, one is of defined symbols and other is of undefined entries using get undefined entries().

These lists are then processed subsequently in further stages such as symbol resolution

and relocation.

4.3.2 Symbol resolution

For Symbol resolution, symbol references are resolved from each pair of object files.

resolve undefined reference() takes up as an argument a list of defined symbols of

some object file and another list of undefined symbols of any other object file to be linked

together. It then finds out if the entry from undefined list is present in the defined list

if so, it moves that symbol from list of undefined entries to defined. If such undefined

entry is resolved then it sets the argindex flag of that symbol to -1. Finally after all

the pairs of files are resolved, definition not found() is called. This function traverses

undefined list of every object file and checks if the argindex flag of all of these symbols

is set to -1. If an entry is found whose symbol entry doesn’t have argindex set to -1.

It implies that some symbol reference is not resolved and prints out appropriate error

message. See Appendix D for code of these functions and symbol structure definition.

4.3.3 Relocation

Before relocation, linker calculates total size of resultant binary along with individual

size of data section and text section. Then do relocation() takes an argument each

object file and it’s text section, data section and their respective position offset in final

executable. This is calculated by taking into consideration modulo 32 byte order. That

is for second object file in the list it’s text section would start exactly at the address

Figure 4.1: Linker output for missing symbol test case

Figure 4.2: Linker output for positive test case

modulo 32 which is next to after end of text section of first object file. Then it reads

relocation table of that object file and finds out it’s entry in corresponding list of defined

symbols. Then as mentioned in the design section it identifies the type of symbol i.e

either R 386 32 or R 386 PC32. Depending upon it’s type it calculates the new offset

of the corresponding symbol and puts that value at the address given by that symbol’s

relocation table entry.

Finally all the sections of different object files are merged together and value of entry

point is set in Program header. Also total filesize of final executable is updated.

Final working output of linker is shown in figures 4.1 and 4.2

Chapter 5

Assignments for Operating system

course

This chapter discusses a series of assignments that can be incorporated into operating

system coursework. Educators making use of these assignments are expected to use mod-

ified xv6 kernel specifically developed for this project. All the assignments are designed in

such a way that it will help students to get more insight into critical modules of operating

system.

5.1 Assignment 1: Adding library function with corresponding

system call

5.1.1 Problem Statement

Adding a new library function along with its corresponding mapping system call. The

current xv6 kernel doesn’t have support for position seeking in given file. Students are ex-

pected to add this functionality by adding corresponding system call and library interface

function for the same.

27

Figure 5.1: Assignment 3:Solution

5.1.2 Aim of assignment

This assignments will help students in understanding working flow of library functions

and their mapping with system call underlying in kernel space.

5.1.3 Solution

The current xv6 lacks of fseek library function. Students are expected to add fseek

library function with its wrappers functions in user space as well as corresponding system

call in kernel space. The implementation of the code will be as shown in the figure.

Implementing fseek library function

This library function can be implemented by writing a wrapper function in library which

internally calls to lseek(). There might be some processing code or error checking that

can be done itself in fseek() at user space level. lseek() is also a part of library

which causes software interrupt int 0x80, result of which it lands into kernel space. For

this implementation we haven’t done much in user space level, but in real world library

functions there is lots of code divided in multiple wrapper functions.

Implementing lseek system call

For adding such functionality in kernel, we need to add a system call which will handle

fseek call. A specific number has to be assigned to system call, which is expected to pass

in eax which calling interrupt. The control reaches to same system call whose number

had been passed in register. For that sys lseek() function is implemented in kernel

space. It again calls to fileseek function internally which actually seeks the required

position in the file.

5.1.4 Code

1 i n t f s e e k (FILE ∗ stream , i n t o f f , i n t whence) {

r e turn l s e e k (stream−>desc , o f f , whence) ;

3 }

g l ob l l s e e k ;

5 l s e e k :

movl $SYS ##name , %eax ;

7 i n t 0x80 ;

r e t

9 i n t s y s l s e e k (void) {

s t r u c t f i l e ∗ f ;

11 i n t n ,mode ;

i f (a rg fd (0 , 0 , &f) < 0 | | a r g i n t (2 , &n) < 0 | | a r g i n t (3 , &mode) < 0)

13 r e turn −1;

r e turn f i l e s e e k (f , n , mode) ;

15 }

i n t

17 f i l e s e e k (s t r u c t f i l e ∗ f , i n t o f f , i n t mode)

{

19 i f (f−>r eadab le == 0)

re turn −1;

21 i f (f−>type == FD PIPE)

return −1;

23 i f (f−>type == FD INODE) {

i f (mode == 0 && o f f < f−>ip−>s i z e)

25 f−>o f f = o f f ;

e l s e i f (mode == 1 && (f−>o f f + o f f) < f−>ip−>s i z e)

27 f−>o f f = f−>o f f + o f f ;

e l s e i f (mode == 2)

29 ; // Not implemented

e l s e

31 r e turn −1;

r e turn o f f ;

33 }

r e turn −1;

35 }

5.2 Assignment 2: Scheduling

5.2.1 Problem Statement:

Scheduling policy is backbone of the modern day pre-emptive kernels. This assignment

involves using different scheduling policy for the Xv6 kernel other than currently used

Round Robin scheduling algorithm.

5.2.2 Aim of assignment:

To introduce students to different scheduling policy and evaluate their performances.

5.2.3 Solution:

There are variety of scheduling policy discussed in Operating system literature. Students

are first advised to go through them and then implement some of them as per guidelines

mentioned below.

Round Robin

This is the default policy used in current Xv6 operating system. But currently xv6 sched-

ules process after every clock tick. This can be changed by setting up some pre-processor

variable while building up the kernel. So the trap mechanism will invoke scheduler only

after those many clock ticks. That is kernel should provide functionality so that Xv6 can

use different time quantum for round Robin policy. After this students are expected to

perform different experiments mentioned below in evaluation section.

Two Queues Scheduling

This scheduling policy is based on concept of priority scheduling. In such scheduling

mechanism while creating process proc struct will have an added field which will mention

the priority of that process. In general any application level process will have high

priority but most of the UNIX implementation provide nice system call which allows

user to lower the priority of given process.

For designing of actual scheduler for such scheme, one of queues will hold all the high

priority processes and other will hold all the lower priority processes. Then scheduler

should be invoked after some predefined time quantum as mentioned above. On each

invocation scheduler will schedule the process with RUNNABLE state from high priority

queue. But it will schedule the process from other lower priority queue on alternate

invocation of scheduler only. Such priority scheduling mechanism has to ensure that there

are on no high priority process with RUNNABLE state before scheduling any process from

low priority queue.

This can be easily achieved by using static flag variable in scheduler function in current

xv6 code.

Two Queues guaranteed fair scheduling

This is an advanced version of Two Queues Scheduling policy whose major drawback is

that, in some scenarios it may starve low priority processes forever. So remedy for this

solution is to use fair scheduling policy which calculates the ratio given below for every

process:

rtime

current time− ctime
(5.1)

and schedules the process with lowest priority.

Here rtime is running time of process and ctime is creation time of process. These

time measures are nothing but the number of clock ticks which can be calculated by

adding and extra time field in proc struct and updating it’s value for every clock tick.

5.2.4 Evaluation of different Scheduling schemes:

For evaluating different scheduling policy use -D option of gcc compiler while building

xv6. Then by making use of conditional pre-processing constructs such as ifdef various

scheduling schemes can be used.

For stress measurement of different policy write a user level program as test case. This

program will fork 25 child process upon execution. Every child process will have unique

pid. After that all the process which have odd numbered process id will lower their

priority immediately.

Every child process will have code that prints it’s pid 200 times and then calls exit. Till

then parent process does wait. But the wait system call should be modified so that it

can return the time for which it is waiting and the total time for which the child process

was running. Depending upon these measures various inferences can be drawn.

5.3 Assignment 3: Implementing semaphores in xv6

5.3.1 Problem Statement

The currently xv6 uses concept of spinlock for synchronizing the process. This assign-

ment aims at implementing semaphore using xchg hardware instruction.

5.3.2 Aim of assignment

The students are expected to implement multiple instance synchronization using semaphores.

5.3.3 Solution

The semaphore can be implemented with the help of structure struct semaphore which

has two variables value and lock. Init function initializes semaphore variable to speci-

fied value i.e the number of instances available of that resource. P() and V() also called

as up and down functions respectively performs action on semaphore to acquire and re-

lease the resource. The updation of val variable has to be atomic. Multiple process

trying to get the semaphore should not enter into the critical section code that updates

value of val. So the code in the P() and V() functions is critical and it has to be

protected during concurrency multiple process. These critical sections are protected by

hardware instruction xchg which guarantees atomic operation of the instruction. Hence,

here mutual exclusion is implemented using xchg. Just for sake of simplicity instead of

maintaining the waiting queue which sent for sleep and then woke up, the process just

allowed to spin while acquiring a lock.

5.3.4 Code

1 s t r u c t semaphore {

i n t va l ;

3 i n t l ock ;

} ;

5 i n i t (s t r u c t semaphore ∗ s , i n t va l) {

s−>l o ck = 0 ;

7 s−>va l = va l ;

}

9 P(s t r u c t semaphore ∗ s) {

whi le (1) {

11 whi le (xchg (1 , &s−>l o ck) == 1) ; // implement acqu i r e sp in l o ck us ing xchg

i f (s−>va l > 0) {

13 s−>val−−;

break ;

15 xchg (0 , &s−>l o ck) ; // r e l e a s e sp in l o ck

}

17 }

V(s t r u c t semaphore ∗ s) {

19 whi le (xchg (1 , &s−>l o ck) == 1) ; // implement acqu i r e sp in l o ck us ing xchg

s−>va l++;

21 xchg (0 , &s−>l o ck) ;

}

5.4 Assignment 4: Process Memory Swap

5.4.1 Problem statement:

Current memory map of Xv6 allows only one process to be resident in RAM at a time.

That is whole physical memory is allotted to only single process. But instead of this most

modern day operating system uses a concept of swapping memory architecture. So this

assignment includes implementing memory swapping mechanism in Xv6.

5.4.2 Aim of assignment:

Aim of this assignment is to introduce students to process memory map, demand paging,

swapper mechanism, swap filesystem.

5.4.3 Solution:

To implement swapping mechanism, one has to create a swapper process. It is a dedicated

process that actually selects which process to swap out,in and when to do it so. This

is universal process like init or scheduler, but the care must be taken that this process

starts running before any other process gets created. Hence swapper process must be

create before scheduler process.

Once the swapper process is created, it executes following general algorithm for swap

out mechanism:

1. Select the process to swapped out and when to swap it out.

2. Find it’s process struct entry and then create a swap file with same name as that

of it’s process id. After that write every page of that process from it’s page table

entry to corresponding swap file.

3. Unmap the pagetable entry of that process and set it’s state as SWAPPED OUT in

it’s process struct entry.

Once the swapper process is created, it executes following general algorithm for swap in

mechanism:

1. After the pagefault is generated, a trap mechanism should invoke the swapper pro-

cess, providing pid of the process to be executed.

2. Swapper process should find the relevant swap file from disk.

3. Create a new page table and map all the pages from the swap file to the pages from

this page table.

4. Remove the swap file.

5.4.4 Design of Swapper process

The important task in designing the swapper process is to decide which process to be

swapped out or swap in and when to do it. For this task a preliminary approach would

be periodic memory check of main memory usages by all the process.

Triggering a swapper

This approach involves periodically checking ratio of free pages to the allocated pages in

main memory. If this ratio falls below certain threshold level then swapper should invoke

a function to swap out some process from main memory to swap file system.

Selecting a process for swapping out

The process that is currently in memory and has it’s state as RUNNABLE can only be

swapped out. The decision of which process to be swapped out can be made depending

upon some criteria such as process with minimum no of used pages, Or process with

maximum number of used pages.

Selecting a process for swapping in

This is very much a trivial choice. As this will depend upon which process has caused page

fault. That is while executing certain process, kernel’s loader will notify which desired

process is not currently present in memory and hence a hardware trap is generated. So

a trap mechanism should then find out that process from swap file system and execute

the algorithm for swapping in that process.

5.5 Assignment 5: Modification to linker

5.5.1 Problem Statement (scope resolution)

Current version of linker provided with xv6 doesn’t take into consideration variable bind-

ing of different variable. This assignment includes adding scope resolution capability to

the linker which differentiates between local and global variables of program so as to re-

solve conflict between variables having same names but different bindings in two different

object files.

5.5.2 Aim of assignment:

This assignment will help students understand how variable is actually store in memory

of program depending upon it’s binding such as global, local, static etc. And how that

variable is resolved during linking with other object files.

5.5.3 Solution:

In the current version of linker, for every given object file resolve undefined reference()

finds out if the undefined entry in that object file is found in list of defined objects from

any other object file. But it doesn’t take into consideration whether required defined

object from any other file is declared locally or globally. If it is defined locally then it

can’t be used as external reference. So for solving this problem one has to check the

binding of particular variable while resolving references. That is the particular undefined

entry is resolved only if it defined globally in any other provided object file. To find the

type binding of given variable make use of ELF32 ST BIND() macro.

5.5.4 Problem Statement (order of object file argument)

Current algorithm of xv6 can handle function call references only from files which are

provided as argument to linker program after the file from which functions are called.

That is object file given as argv[1] can only call functions defined in argv[2] or greater

than that. Here students are expected to modify current implementation so as to allow

more than 3 files to be linked together and every other file can call function from any

other file irrespective of it’s order.

5.5.5 Aim of assignment

To understand the concept of Mathematical set theory in traditional computer science.

Current linker uses a ’list’ data structure which actually stores the list of defined and

undefined objects for every given object file argument. This implementation has a draw-

back that it can only link at max 3 files together. For fixing this problem student will

have to design a new data structure for practical purpose which will be a big confidence

booster and problem solving exercise for them.

5.5.6 Solution

The solution to this problem is to use a Set data structure. Rather than using individual

lists of defined and undefined symbols for every object file, one should define global Set

of defined symbol named D and another set of undefined symbol U. Then for each input

object file, linker should read the symbol table entries of it and accordingly add defined

and undefined symbol to D and U respectively. If it finds any undefined symbol any one

of the object file and that symbol is present in set D then it should delete that entry from

set U.This process of scanning each file should be repeated until U and D doesn’t change

even after scanning entire set of object files. This mechanism ensures that even if some

function is present in U set if first traversal and it’s definition is in files before it on the

command line, it will be resolved during next traversal.

After this stage check out if set U is empty or not. If it is empty then that means all

the undefined symbol entries have found their respective references. If it is not empty

then that means there are some undefined symbol entries in some object file for which

linker can’t find it’s definition or initialization.

5.6 Assignment 6: File system modification

5.6.1 Problem Statement:

The assignment is to speed up the current filesystem transaction.

5.6.2 Aim of assignment:

This assignment will give more deeper insight into the current design of xv6 filesys-

tem. Some of the modern day filesystem concepts such as journaling, memory mapped

filesystem, filesystem cache can be understood more easily. This assignment will be a

good exercise of evaluating particular operating system module and then enhancing it’s

performance.

5.6.3 Solution:

Speed of retrieving content from filesystem depends upon how much data is retrieved in

one I/O disk access. For current xv6 filesystem each block is of size 1KB. So during one

I/0 cycle it can only fetch 1KB of data from disk. So a solution to this is to increase a

size of block to 4KB. So this involves changing the size of uchar data in buf struct to

4096.

Another drawback of xv6 filesystem is it’s block allocation policy. Currently while

creating any file or directory, new blocks are allocated from the list of free blocks on

disks. This poses problem of data locality. For instance, if there are 10 directories

created in a filesystem and then new file is created in first out of them. Then every time

that file is accessed filesystem will have to seek all the blocks in between them. So one

way to tackle this problem is to maintain locality of inodes of every file in it’s parent

directory. To do so, one can allocate group of free blocks near directory inode whenever

new directory is created. So when new file is added to that directory, free blocks are

allocated from those blocks. This ensures lower seek time.

Chapter 6

Conclusions and Future work

As this report examines in detail about different aspects of developing a prototype oper-

ating system that can help in improving learning experience of individuals enormously.

Apart from this it can be concluded that such efforts will help in achieving two other

prime objectives. 1. It gives a deeper insight into the internal working of system softwares

to the application level developer. So that in future he can write more efficient user level

programs leveraging complete features of underlying OS and architecture. 2. Such pro-

totypes can prove as a prominent tools for people developing an alternative solutions to

current bottlenecks. These prototypes can be used as a sandbox for developing alternate

mechanisms and then taking them to the production level software for further evaluation.

This approach will help system level developers to make sure that their alternative so-

lution is not against the basic fundamentals of operating system functioning which may

happen when one directly tries to replace old mechanism in current codebase.

6.1 Framework for porting system softwares to fresh kernel

Though main objective of this project is to develop an educational purpose operating

system for graduate/undergraduate course, it’s very important to actually devise a frame-

41

work that can be used in future to develop such prototypes for variety of different plat-

forms such as android operating system, real time operating system.

As a part of this project we have outlined following some guidelines for developing

such prototypes in variety of domains:

1. First step in developing such prototypes is that it should be easy to compile and

use, comprising only one central Makefile.

2. While developing such prototypes it should be ensured that most of the error check-

ing is purposefully skipped off. This helps in reducing the extra bloat added to

production level software codebasee

3. Number of hooks like presenting intermediate state output should be done in code-

base. These hooks and output on console helps user in understanding the exact

phases throught which final results produced.

4. If some third party softwares are needed to be ported, then one has to make sure

that they are compliant to open source software license like GPL,AGPL. This is very

much essential for overall code re-usability and understandability.

5. All the third party software utilities should be considered only if they fall under all

the criterion’s mentioned in literature survey.

6. It is very much important to produce comprehensive documentation for given pro-

totype using tools such doxygen.

6.2 Future work

6.2.1 complete standalone compiler bundle like tcc

Currently xv6 is equipped with a subset of C language interpreter named Picoc, an

elementary linkage editor which can link together three relocatable object files and some

other status utilities. But one important thing that it is lacking right now is a complete

compiler tool chain. One of the main reason for this is lacking of such small and working

compiler tool chain for educational purposes. As found in literature survey, some of the

existing options are not feasible enough for this project. Hence the future step for this

project is to develop such one small time compiler bundle.

Looking at this future prospect we have started working on TCC compiler bundle.

TCC contains standalone translator, assembler and linker. If these efforts come true

then xv6 can have utilities that will give overview of complete compilation process as per

mentioned in framework described above.

6.2.2 prototype network stack for xv6

One of the future enhancements to this project would be to add an elementary network

stack. This stack will help in understanding one of the most important subsystems of

modern day operating systems.

6.3 MOOC

As mentioned in the desired framework for developing such educational purpose systems,

one has to focus on innovative documentation methods. Also it is very much important

on part of developers to represent these prototypes to intended users such as novice

developers, students through comprehensive coursework.

Considering this fact we have started working on configuring Openedx platform, to host

this new experimental course work through the medium of massive open online coursework

(MOOC) medium. The main emphasis will be given on designing assignments that will

help student understand the underlying concepts with appropriate depth and width.

Appendix A

Library Functions

Functions Usage

acos.S arc cosine function

asin.S arc sine Function

atan.S arc tangent Function

log.S logarithmic function

pow.c pow.S power function

floor.S floor function

ceil.S ceil function

cos.S cosine function

sin.S sine Function

tan.S tangent Function

acosh.c inverse hyperbolic Cosine function

asinh.c inverse hyperbolic Function

atanh.c inverse hyperbolic Tangent Function

exp.S exponetial function

fmod.S modulo function

Table A.1: Mathematical Functions and their usage

45

Function File Description

stdin is tty stdin.c Check if terminal is available

fflush stdin stdin.c Flushes the standard input

fflush stdout stdout.c Flushes the standard output

fflush stderr stderr.c Flushes the standard error

vprintf vprintf.c write output to character string ’str’

strtol strtol.c converts initial part of the string in nptr to a long integer value

strtoul strtoul.c convert string to unsigned long long int value

printf printf.c prints output to standard output

ltostr ltostr.c converts unsigned long integer to character string

lltostr.c lltostr.c converts unsigned long long integer to character string

isinf isinf.c check if number can be consider as infinity

isnan isnan.c check if number is NULL

fwrite fwrite.c writes nmemb elements of data, each size bytes long

fputc unlocked fputc.c writes the character c, cast to an unsigned char, to stream

fread libfile.c reads n member elements of data, each size bytes long

fwrite libfile.c writes n member elements of data each bytes long

fclose libfile.c function flushes the stream pointed to by fp and closes the underlying file descriptor.

fopen libfile.c opens file whose name is the string pointed to by path and associates a stream with it

fseek libfile.c sets the file position indicator for the stream pointed to by stream

fputs libfile.c writes the string s to stream, without its terminating null byte

Table A.2: Standard i/o Library Functions and their usage

Appendix B

Linking script

ld -N -e main -Ttext 0 -o picoc clibrary.o heap.o lex.o parse.o platform.o stdio.o type.o ex-

pression.o include.o library unix.o picoc.o platform unix.o table.o variable.oulib.o usys.o

printf.o umalloc.o libfile.o pow.o exp.o liblog.o

47

Appendix C

Source Code for New Library

Functions Added

FILE ∗ fopen (char ∗path , char ∗ mode) {

2 i n t fd ;

FILE ∗ fp ;

4 fp = (FILE ∗) mal loc (s i z e o f (FILE)) ;

6 i f (fp == (void ∗) 0) ;

// p r i n t f (”mal loc problem\n”) ;

8

i n t m, s e e k s e t = 0 ;

10 m = checkmode (mode,& s e ek s e t) ;

fd = open (path , m) ;

12

i f (s e e k s e t)

14 l s e e k (fd , 0 , 2) ;

16 fp−>desc = fd ;

r e turn fp ;

18 i n t f r ead (void ∗ptr , s i z e t s i z e , s i z e t nmemb, FILE ∗ stream) {

i f (stream == (void ∗) 0)

20 r e turn 0 ;

i n t r e s ;

48

22 /∗ p r i n t f (” fd = %d\n” , stream−>desc) ;∗/

r e s = read (stream−>desc , ptr , s i z e ∗nmemb) ;

24 r e turn r e s ;

}

26

28 i n t fw r i t e (void ∗ptr , s i z e t s i z e , s i z e t nmemb, FILE ∗ stream) {

i f (stream == (void ∗) 0)

30 r e turn 0 ;

// i f STDIO i s bu f f e r ed implementation should be added i t s s imple d i r e c t implememtation

32 i n t r e s ;

r e s = wr i t e (stream−>desc , ptr , s i z e ∗nmemb) ;

34 r e turn r e s / s i z e ;

}

36

38 i n t f c l o s e (FILE ∗ fp) {

i n t r e t ;

40 i f (fp == (void ∗) 0)

re turn 1 ;

42 r e t = c l o s e (fp−>desc) ;

f r e e (fp) ;

44 r e turn r e t ;

// e x i t (1) ;

46 }

}

48 i n t f p r i n t f (FILE ∗ stream , char ∗ fmt , . . .)

{

50 char ∗ s ;

i n t c , i , s ta te , s t r i n gPo i n t e r ;

52 uint ∗ap ;

s t r i n gPo i n t e r = 0 ;

54

s t a t e = 0 ;

56 /∗ due to +1 i t f e t c h e s the second argument∗/

ap = (u int ∗) (void ∗)&fmt + 1 ;

58 f o r (i = 0 ; fmt [i] ; i++){

c = fmt [i] & 0 x f f ;

60 i f (s t a t e == 0) {

i f (c == ’%’) {

62 s t a t e = ’%’ ;

} e l s e {

64 putc (stream−>desc , c) ;

s t r i n gPo i n t e r++ ;

66 }

} e l s e i f (s t a t e == ’%’) {

68 i f (c == ’d ’) {

p r i n t i n t (stream−>desc , ∗ap , 10 , 1,& s t r i n gPo i n t e r) ;

70 ap++;

} e l s e i f (c == ’x ’ | | c == ’p ’) {

72 p r i n t i n t (stream−>desc , ∗ap , 16 , 0,& s t r i n gPo i n t e r) ;

ap++;

74 } e l s e i f (c == ’ s ’) {

s = (char ∗) ∗ap ;

76 ap++;

i f (s == 0)

78 s = ” (nu l l) ” ;

whi l e (∗ s != 0) {

80 putc (stream−>desc , ∗ s) ;

s++;

82 s t r i n gPo i n t e r++ ;

}

84 } e l s e i f (c == ’ c ’) {

putc (stream−>desc , ∗ap) ;

86 ap++;

s t r i n gPo i n t e r++ ;

88 } e l s e i f (c == ’%’) {

putc (1 , c) ;

90 s t r i n gPo i n t e r++ ;

92 } e l s e {

// Unknown % sequence . Pr int i t to draw at t en t i on .

94 putc (stream−>desc , ’%’) ;

putc (stream−>desc , c) ;

96 s t r i n gPo i n t e r += 2 ;

}

98 s t a t e = 0 ;

}

100 }

r e turn s t r i n gPo i n t e r ;

102

}

Appendix D

Source Code for Newly Designed

Linker

typede f s t r u c t Node{

2 char name [1 6] ;

GElf Sym ∗ symbol ;

4 s t r u c t Node ∗next ;

i n t arg index ;

6 }Node ;

8 i n t d e f i n i t i o n n o t f o und (Node ∗ u n d e f i n e d o b j e c t f i l e) {

Node ∗p ;

10 p = und e f i n e d o b j e c t f i l e ;

p r i n t f (” . \ n”) ;

12 t r a v e r s e (u n d e f i n e d o b j e c t f i l e) ;

p = p−>next ;

14 whi le (p != NULL) {

i f (p−>arg index >= 0) {

16 p r i n t f (”%s : miss ing d e f i n i t i o n \n” ,p−>name) ;

r e turn 1 ;

18 }

p = p−>next ;

20 }

r e turn 0 ;

52

22 }

24

void g e t und e f i n e d en t r i e s (E l f ∗ e l f , Node ∗∗ und e f i n e d ob j e c t f i l e 1 , Node ∗∗

d e f i n e d o b j e c t f i l e 1 , i n t arg index) {

26

/∗ s e g r ega t e symbol t ab l e e n t r i e s i n to de f in ed and undef ined

28 argument : E l f ∗ e l f , from which symbol are to be separated out

requ i rements : Global po i n t e r s from undef ined symbols and de f ined symbols o f type

GElf Sym ∗∗ should be dec l a r ed

30 r e turn va lue s : I t r e tu rn s none , but w i l l mal loc above mentioned ar rays ∗/

i n t i , j , k , symbol count ;

32 El f Scn ∗ scn1 = NULL;

GElf Shdr shdr ;

34 Elf Data ∗ edata = NULL;

GElf Sym ∗sym ;

36 i = j = k = 0 ;

38 whi le ((scn1 = e l f n e x t s c n (e l f , scn1)) != NULL)

{

40 g e l f g e t s h d r (scn1 , &shdr) ;

42 // When we f i nd a s e c t i o n header marked SHT SYMTAB stop and get symbols

i f (shdr . sh type == SHT SYMTAB)

44 {

// edata po in t s to our symbol t ab l e

46 edata = e l f g e t d a t a (scn1 , edata) ;

symbol count = shdr . s h s i z e / shdr . s h e n t s i z e ;

48 i n t counter = (i n t) s i z e o f (E l f 32 Re l) ;

50 /∗ how many symbols are the re ?

h i s number comes from the s i z e o f // the s e c t i o n d iv ided by the entry s i z e

52 l i b e l f grabs the symbol data us ing ge l f g e t sym ()

∗/

54

f o r (i = 0 ; i < symbol count ; i++){

56

sym = (GElf Sym ∗) mal loc (s i z e o f (GElf Sym)) ;

58 ge l f g e t sym (edata , i , sym) ;

60 i f (sym−>s t shndx == SHN UNDEF) {

// i f (ELF32 ST BIND(sym−>s t i n f o) == 1) // t h i s checks f o r l o c a l d e c l a r a t i on

62 i n s e r t (u nd e f i n e d ob j e c t f i l e 1 , sym , e l f s t r p t r (e l f , shdr . sh l i nk , sym−>st name) ,

arg index) ;

} e l s e {

64 i f (ELF32 ST TYPE(sym−>s t i n f o) != STT FILE)

i n s e r t (d e f i n e d o b j e c t f i l e 1 , sym , e l f s t r p t r (e l f , shdr . sh l i nk , sym−>st name) ,

arg index) ;

66 }

}

68 }

}

70 }

void do r e l o c a t i o n (E l f ∗ e l f , Node ∗def ined1 , char ∗ text , char ∗ data , i n t t e x t s i z e , i n t

s t a r t t e x t , i n t s t a r t d a t a) {

72 i n t symbol count ;

i n t i ;

74 El f Scn ∗ scn1 = NULL;

GElf Shdr shdr ;

76 Elf Data ∗ edata = NULL;

GElf Rel ∗ r e l , rel mem ;

78 char ∗sym name ;

Node ∗ symbol entry = NULL;

80 char ∗ r e f p t r = NULL;

i n t tmp ;

82

whi le ((scn1 = e l f n e x t s c n (e l f , scn1)) != NULL)

84 {

g e l f g e t s h d r (scn1 , &shdr) ;

86

i f (shdr . sh type == SHT REL) {

88 // edata po in t s to our symbol t ab l e

edata = e l f g e t d a t a (scn1 , edata) ;

90 symbol count = shdr . s h s i z e / shdr . s h e n t s i z e ;

i n t counter = (i n t) s i z e o f (E l f 32 Re l) ;

92 f o r (i = 0 ; i < symbol count ; i++){

/∗ get every entry from r e l o c a t i o n tab l e ∗/

94 r e l = g e l f g e t r e l (edata , i ,&rel mem) ;

96 /∗ get i t ’ s newly modi f i ed address from de f ined1 syml i s t ∗/

sym name = get symbol name (e l f , (i n t)GELF R SYM(re l−>r i n f o)) ;

98 symbol entry = (Node ∗) i s p r e s e n t (de f ined1 , sym name) ;

p r i n t f (”symbol i s %s and symbol va lue %d\n” , sym name , (i n t) symbol entry−>symbol

−>s t v a l u e) ;

100 i f (symbol entry == NULL) {

p r i n t f (”Undefined r e f e r e n c e to symbol %s \n” , sym name) ;

102 r e turn ;

}

104

/∗ check r e l o c a t i o n tab l e e n t r i e s type from r e l o c a t i o n tab l e ∗/

106 i f (ELF32 ST TYPE(r e l−>r i n f o) == R 386 PC32) {

/∗ i f i t i s a func t i on ∗/

108 r e f p t r = text + (i n t) r e l−>r o f f s e t + s t a r t t e x t ;

i f (symbol entry−>symbol−>s t shndx == 1) {

110 /∗ i t from text s e c t i o n ∗/

112 tmp = (i n t) ((symbol entry−>symbol−>s t v a l u e) − (i n t) r e l−>r o f f s e t −

s t a r t t e x t + ∗(i n t ∗) r e f p t r) ;

p r i n t f (” va lue o f tmp in 1 i s %x value i s %d\n” , tmp , (i n t) symbol entry−>

symbol−>s t v a l u e) ;

114 // p r i n t f (” va lue in tex t pc32 tmp = %d and r e l o f f s e t = %d\n” , (i n t)tmp , (i n t)

r e l−>r o f f s e t) ;

∗(i n t ∗) r e f p t r = tmp ;

116 } e l s e i f (symbol entry−>symbol−>s t shndx == 2) {

tmp = (i n t) (t e x t s i z e − symbol entry−>symbol−>s t v a l u e −(i n t) r e l−>r o f f s e t

+∗(i n t ∗) r e f p t r) ;

118 p r i n t f (” va lue o f tmp in 1 i s %x value i s %d\n” , tmp , (i n t) symbol entry−>

symbol−>s t v a l u e) ;

// ∗(i n t ∗) r e f p t r = tmp ;

120 }

} e l s e i f (ELF32 ST TYPE(r e l−>r i n f o) == R 386 32) {

122 /∗ i f i t i s a v a r i ab l e ∗/

r e f p t r = text + (i n t) r e l−>r o f f s e t + s t a r t t e x t ;

124 i f (symbol entry−>symbol−>s t shndx == 1) {

/∗ i t from text s e c t i o n ∗/

126 // r e f p t r = text + (i n t) r e l−>r o f f s e t ;

tmp = (i n t) (symbol entry−>symbol−>s t v a l u e) ;

128 ∗(i n t ∗) r e f p t r = tmp ;

} e l s e i f (symbol entry−>symbol−>s t shndx == 2) {

130 // r e f p t r = data + (i n t) r e l−>r o f f s e t ;

tmp = (i n t) (t e x t s i z e + (i n t) symbol entry−>symbol−>s t v a l u e) ;

132 ∗(i n t ∗) r e f p t r = tmp ;

p r i n t f (”tmp i s %x\n” ,tmp) ;

134 }

p r i n t f (” va lue o f tmp i s %x and t e x t s i z e %d and value = %d \n” ,tmp , t e x t s i z e , (

i n t) symbol entry−>symbol−>s t v a l u e) ;

136 } e l s e {

p r i n t f (”%d type not supported \n” , (i n t)ELF32 ST TYPE(r e l−>r i n f o)) ;

138 e x i t (1) ;

}

140 }

}

142 }

}

Appendix E

Object File Definitions

typede f s t r u c t {

2 Elf32 Word st name ;

Elf32 Addr s t v a l u e ;

4 Elf32 Word s t s i z e ;

unsigned char s t i n f o ;

6 unsigned char s t o t h e r ;

E l f 3 2 Ha l f s t shndx ;

8 } Elf32 Sym ;

10 typede f s t r u c t {

Elf32 Addr r o f f s e t ;

12 Elf32 Word r i n f o ;

} El f32 Re l ;

14 typede f s t r u c t {

Elf32 Addr r o f f s e t ;

16 Elf32 Word r i n f o ;

Elf32 Sword r addend ;

18 } El f32 Re la ;

57

Appendix F

New In memory Inode Structure of

xv6 File System

1 s t r u c t dinode {

shor t type ; // F i l e type

3 shor t major ; // Major dev i c e number (T DEV only)

shor t minor ; // Minor dev i c e number (T DEV only)

5 shor t n l i nk ; // Number o f l i n k s to inode in f i l e system

uint s i z e ; // S i z e o f f i l e (bytes)

7 uint addrs [NDIRECT+1] ; // Data block addre s s e s ∗ changes made

} ;

58

Bibliography

[1] Bluefire os. Website. http://code.google.com/p/blue-fire-os/.

[2] Dietlibc c library. Website. http://www.fefe.de/dietlibc/.

[3] Indian university knowledge base. Website. http://kb.iu.edu/data/akqn.html.

[4] Linux kernel version 0.01. Website. https://www.kernel.org/pub/linux/kernel/Historic/.

[5] MINIX 3 official. Website. http://www.minix3.org.

[6] Mit’s xv6 operating system course. Website. http://pdos.csail.mit.edu/6.828/2012/.

[7] Picoc small c interpreter. Website. http://code.google.com/p/picoc/.

[8] Plan 9. Website. https://www.kernel.org/pub/linux/kernel/Historic/.

[9] Sos simple operating system. Website. http://sos.enix.org/en/MainPage.

[10] Xinu web resource. http://www.xinu.cs.purdue.edu.

[11] Yale’s xv6 operating system course. Website. http://zoo.cs.yale.edu/classes/cs422/2014/.

[12] Robert Love. Understanding the Linux Kernel 3rd edition. OReilly Media, 2001.

[13] Robert Morris Russ Cox, Frans Kasshoek. xv6 a simple, Unix-like teaching operating

system. MIT, June 2009.

59

http://code.google.com/p/blue-fire-os/
http://www.fefe.de/dietlibc/
http://kb.iu.edu/data/akqn.html
https://www.kernel.org/pub/linux/kernel/Historic/
http://www.minix3.org
http://pdos.csail.mit.edu/6.828/2012/
http://code.google.com/p/picoc/
https://www.kernel.org/pub/linux/kernel/Historic/
http://sos.enix.org/en/MainPage
http://www.xinu.cs.purdue.edu
http://zoo.cs.yale.edu/classes/cs422/2014/

	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Need of developing a prototype Operating System:
	Components of education OS:
	Reason for porting Interpreter in education OS:
	 Reason for porting standalone Linkage editor to OS:
	 Reason for designing built in code review utilities:

	Literature Survey
	Current educational purpose operating systems
	XINU
	SOS
	linux-0.01
	Bluefire OS
	MINIX
	plan 9
	xv6

	Components of prototype operating systems
	Introduction to Picoc
	Introduction to dietlibc

	Design
	Design of platform for Picoc interpreter
	Workflow of Picoc
	Adding library support for Picoc
	Building Picoc interpreter in xv6

	Design of Linkage editor for xv6
	static linking and dynamic linking
	Algorithm for symbol resolution used in linker
	Algorithm used for relocation in linker

	Filesystem modifications
	Original xv6 structure
	Changes made to increase max file size limit

	Standard library in C

	Implementation
	Porting Picoc to xv6
	New functions added to port Picoc to xv6
	Library of Picoc

	Increasing Max filesize limit of filesystem in xv6
	Original block allocator in xv6 filesystem
	changes made to on-disk Inode structure
	Modified block allocation strategy

	Linkage editor
	Implementation of static linker in xv6
	Symbol resolution
	Relocation

	Assignments for Operating system course
	Assignment 1: Adding library function with corresponding system call
	Problem Statement
	Aim of assignment
	Solution
	Code

	Assignment 2: Scheduling
	Problem Statement:
	Aim of assignment:
	Solution:
	Evaluation of different Scheduling schemes:

	Assignment 3: Implementing semaphores in xv6
	Problem Statement
	Aim of assignment
	Solution
	Code

	Assignment 4: Process Memory Swap
	Problem statement:
	Aim of assignment:
	Solution:
	Design of Swapper process

	Assignment 5: Modification to linker
	Problem Statement (scope resolution)
	Aim of assignment:
	Solution:
	Problem Statement (order of object file argument)
	Aim of assignment
	Solution

	Assignment 6: File system modification
	Problem Statement:
	Aim of assignment:
	Solution:

	Conclusions and Future work
	Framework for porting system softwares to fresh kernel
	Future work
	complete standalone compiler bundle like tcc
	prototype network stack for xv6

	MOOC

	Library Functions
	Linking script
	 Source Code for New Library Functions Added
	Source Code for Newly Designed Linker
	Object File Definitions
	New In memory Inode Structure of xv6 File System

