
Monitoring Framework for B-Tree File System

A Project Report

Submitted by

Gautam Akiwate 110808006

Shravan Aras 110803073

Sanjeev M.K. 110808019

in partial fulfilment for the award of the degree

of

B.Tech Computer Engineering/

Information Technology

Under the guidance of

Prof. Abhijit A.M.

College of Engineering, Pune

DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION TECHNOLOGY,

COLLEGE OF ENGINEERING, PUNE-5

May, 2011

DEPARTMENT OF COMPUTER ENGINEERING AND

INFORMATION TECHNOLOGY,

COLLEGE OF ENGINEERING, PUNE

CERTIFICATE

Certified that this project, titled ”Monitoring Framework for B-Tree File System” has

been successfully completed by

Gautam Akiwate 110808006

Shravan Aras 110803073

Sanjeev M.K. 110808019

and is approved for the partial fulfilment of the requirements for the degree of “B.Tech.

Computer Engineering/Information Technology”.

SIGNATURE SIGNATURE

Prof. Abhijit A.M. Dr. Jibi Abraham

Project Guide Head

Department of Computer Engineering Department of Computer Engineering

and Information Technology, and Information Technology,

College of Engineering Pune, College of Engineering Pune,

Shivajinagar, Pune - 5. Shivajinagar, Pune - 5.

Abstract

The Operating System Kernel is one of the most fundamental piece of software that is

instrumental in keeping a system running. Besides providing for tasks like scheduling,

interrupt handling and resource management, the kernel also handles storage of data

on physical devices. The File System is responsible for these activties in the kernel.

The File System maintains various data structures which keep track of of data on the

disk. Traditional File Systems are supported by Logical Volume Manager (LVM) which

manages the disk partitions on which the File Systems are mounted. However, the Next-

Generation File Systems amalgamate the LVM with the actual file system along with

other features like Copy-on-Write (COW), RAID, Snapshots, Storage Pools, Checksums

etc. Considering the importance of the role that the File System plays and the complexity

of the task it is essential to have a monitoring system for the File System that monitor

the health of the File System and other parameters so as to indicate the well-being of

the File System. In case of the Next-Generation File Systems the need for a monitoring

system becomes even more paramount. The B-Tree File System also called BTRFS is one

such next generation file system and is touted as the file system of choice in the future.

This work deals with design and implementation of a Monitoring Framework for BTRFS.

This will enable system administrators to analyze various parameters of File System. The

key characteristic of the framework developed which makes it highly desirable is that the

framework is flexible and easy to extend.

Contents

List of Tables ii

List of Figures iii

List of Symbols iv

1 Introduction 1

1.1 Background . 1

1.2 Definition of Problem Statement . 2

2 File Systems - Present and Next Generation 3

2.1 The need of a new generation FS . 3

2.2 Future Features . 4

2.2.1 Snapshots and Copy-On-Write . 4

2.2.2 Integrated Volume Manager . 5

2.2.3 Multiple RAID levels . 5

2.2.4 Online fsck,resizing,device management 6

2.2.5 Checking for data corruption . 6

2.3 File system comparisons . 6

3 BTRFS 8

3.1 An Overview of BTRFS . 8

1

3.2 BTRFS Design . 8

3.3 Representation of BTRFS meta data . 10

3.3.1 Overview . 10

3.3.2 BTRFS Key . 13

3.4 Case study - BTRFS debug-tree output 14

3.5 Important In Memory Structures . 17

3.5.1 Super Block . 17

3.5.2 Devices . 17

3.5.3 Relationship between various In Memory data structures 18

4 Generic Framework 19

4.1 Overview . 19

4.2 Design . 20

4.2.1 Design Requirements . 21

4.3 Implementation . 22

4.3.1 Implementation for BTRFS . 23

5 BTRFS Monitoring Framework 24

5.1 Design Framework . 24

5.1.1 Static and Dynamic Phases . 24

5.2 The BTRFS sysfs Interface . 26

6 Device Statistics 28

6.1 Keeping count of the disk errors . 28

6.1.1 IOCTL vs Sysfs . 29

6.1.2 Patch Details . 29

7 Device Statistics Patch - Testing 31

7.1 Approach and Design - Use of Layered OS structure 31

7.1.1 Ramdisk . 32

7.1.2 Final Testing . 33

List of Tables

2.1 Feature Comparison of File Systems . 7

4.1 Need for a New Framework . 19

4.2 Requirements for Generic Framework . 21

4.3 OS Compatability . 22

ii

List of Figures

3.1 BTRFS Tree . 9

3.2 Disk representation of a generic block in BTRFS 11

3.3 Disk representation of BTRFS Tree Node and Leaf 11

3.4 Leaf Item and the BTRFS key/index . 12

3.5 BTRFS Super Block . 17

3.6 Relationship between various BTRFS data structures 18

4.1 Monitoring Framework Design . 20

5.1 Connection between core BTRFS components and the Sysfs interface . . 26

5.2 sysfs Structure . 27

6.1 Device Stats . 29

7.1 Layered OS Structure . 31

iii

List of Symbols

iv

Chapter 1

Introduction

1.1 Background

File Systems play an essential role in the working of the kernel. Advancements in the area

of file storage leading to cheaper storage along with the explosion of data generated have

lead to serious rethinking on the design of File Systems. This has lead to the development

of the Next-Generation File Systems like ZFS[5] and BTRFS[2].

The new File System are designed primarily with requirements for:

• High Capacity

• Data Integrity

• High Performance

• Simplified Administration

• Reduced Costs

• Compatibility

• General Purspose File System

1

These File Systems have implemented many novel ideas and features. However chief

among them is the concept of storage pools. The storage pool is essentially a collection of

all the block devices. This storage pool allows hot swapping of devices. More importantly

it does away with the need of a Logical Volume Manager thereby greatly simplifying the

administration. This switch to the new architecture optimizes and simplifies code paths

from the application to the hardware, producing sustained throughput at exceptional

speeds. Furthermore, usage of the Copy on Write Model that writes the data immediately

on request by allocatiing a new block allows it to easily take snapshots and restore files as

the old data is available too. Not only this but these File Systems also supports variable

block sizes which essentially allow to improve performance and storage and some of them

also allow for different endianess.[2][5]

1.2 Definition of Problem Statement

Considering the importance of the role that the File System plays and the complexity of

the task it is essential to have a monitoring system for the File System that monitor the

health of the File System and other parameters so as to indicate the well-being of the

File System. However, the new architecture of the Next-Generation File Systems leads

to most of the monitoring framework designs for Traditional File Systems to be defunct.

Hence, a need is felt to design a generic framework for Monitoring Systems in these new

File Systems.

The problem statement comprises of two aspects. First is designing a generic frame-

work for Monitoring Systems in the new File Systems. The second is to implement this

design and develop a Monitoring Framework for one of the Next-Generation File Systems.

BTRFS was chosen as it was still under active development and the fact that its source

is released under GPL License and is hence open to contribution from anyone.[2]

Chapter 2

File Systems - Present and Next

Generation

2.1 The need of a new generation FS

Kernel 2.6 has been host to a number of file systems with various underlying concepts.

Each FS has enjoyed varying degrees of popularity and user base. While the log ased

Extended family of file sytems - ext 2/3/4 - has met almost every need of the day-to-day

user and the system administrator, the need for a new breed of file systems that overcome

the shortcomings of the ext group, has ever been felt. No file system fulfils every need

though. The system admin often has to trade-off on various points when selecting the

best file system that suits their purpose. While XFS is designed for multithreading and

heavy workloads, the EXT group is designed to occupy minimum disk space and the

newer breed like ZFS, BTRFS are known for providing recoverability and newer RAID

levels. Which FS to choose depends entirely on the task at hand.

3

2.2 Future Features

What users expect from file systems: 1. Snapshots - The ability to revert the entire

file system back to a previous state at any time. 2. Integrated Volume Manager - The

ability to create and manipulate volumes on the fly. 3. Mulitple RAID level support -

The ability to support a pool of physical devices with maximum flexibility and control.

4. Online FS resize - Changing the size of a mounted FS. 5. Dynamically adding and

removing devices from a common pool without any additional device management. 6.

Online fsck - Repairing and modifying a mounted file system. 7. Online defragmentation

- Defragmenting the data on a mounted file system 8. Corruption checking - Having the

FS associate data with checksums.

We might as well call these the most wanted features in the newer breed of file systems.

The new file sytems like ZFS,BTRFS,NiLFS,EXOFS,ReFS do provide some or all of the

above five features.

2.2.1 Snapshots and Copy-On-Write

Current file systems guarantee the protection of only the associated metadata in cases

of crashes and power outage. BTRFS, ZFS, NiLFS have made it possible to recover

entire chunks of data with just a command or two. This is owed to snapshots - copies of

previous states of the file system. Snapshots can be mounted like normal partitions and

are created when certain checkpoints are reached. One can also manually create these

snapshots. Recovering lost data, deleted files, correcting the file system has become as

simple as mounting a previous working version of the file system. There are a number

of ways of creating snapshots, one of them being Copy-on-Write (COW). The snapshot

keeps track of the changing blocks in the original data. Whenever a write operation occurs

on the original data, before the write is actually done,the previous copy is written to the

snapshot, and then the new data is written.Thus only changing blocks are copied to the

snapshot. Hence the name Copy-on-Write. Read requests to unchanged data blocks read

data from the original block, while requests to the changed blocks are fulfilled from the

snapshot version.

The impact on the performance is there, as all write operations have to wait for old

data to be copied, but read operations are more or less unaffected and there are always

more reads than writes. Also the extra space requirement is minimum, as only the

changed blocks are copied.

2.2.2 Integrated Volume Manager

This feature makes LVM tools obsolete. Volume management is now desired within the

file system itself. With this, one can create and delete volumes within a device on the

fly with normal FS tools, without the need of additional tools and management. The FS

itself takes care of managing all the volumes. The user simply has to use the FS tools to

create the volumes.

2.2.3 Multiple RAID levels

For servers which typically host a pool of devices, it has always been desirable to have a

file system that manages data across the multiple devices flexibly. This data managment

pertaining to multiple devices is provided by having the file system support different

RAID levels. Each RAID level provides different features regarding management of data

across a pool of devices. The ability to configure the RAID level during FS creation,

enables the system administrator to tell the FS how he wishes the FS to manage data -

Whether he wants his data mirrored on all devices, or he wants data to have parity bits

associated etc.

2.2.4 Online fsck,resizing,device management

There has been and increasing demand among server administrators for online tools -

tools that can operate on a file system while it is mounted. Previously, if one wanted

to run fsck on a server disk , it had to be unmounted before running the check. This

meant unavailability of some server resource for a period of time. This has been done

away with, thanks to the invasion of online tools - online FS checking, resizing mounted

devices, adding devices to existing pool, removing devices from them and other complex

pool management services while the pool is active.

2.2.5 Checking for data corruption

New file sytems now associate blocks of data with their corresponding checksums. This

has enabled detection of data corruption soon after it’s occurance. The device statistics

patch of BTRFS, in fact, uses the checksum data to detect corruption and update the

corresponding variable that is exported to userspace via sysfs.

2.3 File system comparisons

While ext4 is still the default file system in majority of the linux distributions, the

younger file systems like ZFS and BTRFS may soon take the default spot, given their

plethora of features. ZFS and BTRFS have a similar feature list with: snapshots,online

defrag,resize,fsck,flexible RAID levels etc. There are very subtle differences however, for

example, in ZFS, the snapshots are read-only but for BTRFS, the snapshots can also be

written to.

Most newer file systems including ZFS,BTRFS, Windows ReFS do support data in-

tegrity checks with checksum and parity bits. XFS has the added feature of providing

high performance on parallel systems. While ZFS, BTRFS provide data deduplication

File System Snapshot Encryption COW Integrated LVM Data Deduplication

BTRFS Yes Yes Yes Yes Yes

ZFS Yes Yes Yes Yes Yes

XFS No No No No No

NiLFS Yes No Yes Yes Yes

ext4 No No No No No

ReFS Yes No Yes No No

Table 2.1: Feature Comparison of File Systems

- reducing redundant data - ReFS has no such feature planned. ZFS and BTRFS also

provide data encryption.

It is clear that ZFS and BTRFS are the future with a kingly set of features. Windows

systems look forward to ReFS which has a feature set similar to BTRFS but it does not

have data deduplication. ReFS however, does have writable snapshots like BTRFS and

unlike ZFS. ZFS on the other hand can also work over networks , much like NFS. BTRFS

has planned something like that for the future.

However, there is a set of common features binding the new file systems: 1. Snapshots

2. Data integrity and security 3. Mulitple RAID Level support 4. Online FS tools -

Defragmentation,resizing,fsck 5. Dynamic volume management

Chapter 3

BTRFS

3.1 An Overview of BTRFS

Btrfs, also called the B-tree File System is a next generation file systems that amalgamates

the role of the Logical Volume Manager (LVM) with the actual file system. The Btrfs

implements this idea in combination with the concept of storage pools and copy on write

system. Btrfs is intended to address the lack of pooling, snapshots, checksums and integral

multi-device spanning in Linux file systems.

Btrfs uses on the fly compression for efficient utilization of space with tight packing of

small files. This combined with the hash tables allows for a very fast search capability.

For improved integrity, Btrfs has checksums for writes and even supports snapshots.

Efficient incremental backups, live defragmentation, dynamic expansion of the file system

to incorporate new devices, and support of massive amounts of data.

3.2 BTRFS Design

The key feature of Btrfs is that it is implemented with simple and well known constructs.

It focuses on maintaining performance of the filesystem. Btrfs essentially is structured

as several layers of trees, all of which use the same B-tree implementation to store data

8

sorted on a 136-bit key. The B-trees are composed of three data types: keys, items and

block headers. The data type of these trees is referred to as items and all are sorted

on a 136-bit key. The key is divided into three chunks. The first is a 64-bit object id,

followed by 8-bits denoting the item’s type, and finally the last 64 bits have distinct uses

depending on the type. The unique key is to help with quick searches using hash tables.

It is also necessary for the sorting algorithms that are designed to keep the tree balanced.

The first 64 bits of the key are a unique object id. The middle 8 bits is an item type

field. The remaining 64 bits are used in type-specific ways.

Super

Root

Extent
Root
Pointer

pointer

default

Subvolume Snapshot
’snap’

Pointer

Directory item.
..

default
snap

Extent Tree
Block allocation
Information and
Reference Counts

Subvolume Tree

Files and

Directories

Figure 3.1: BTRFS Tree

The items contain a key and information on the size and location of the items data.

Block headers contain various information about blocks.The trees are constructed of these

primitive items with interior nodes containing keys to identify the node and block pointers

that point to the child of the node. Leaves contain multiple items and their data. At a

minimum the Btrfs contains three trees. The first tree contains other tree roots. Second

tree contains a subvolumes tree which holds files and directories and third contains an

extents volume tree that contains information about all the allocated extents files. Btrfs

also has a data structure called as superblock that points to the root of roots. Btrfs can

have additional trees needed to support other features.

The copy on write method of the system is a pivotal aspect of Btrfs, once which affects

a number of its features. Writes never occur on the same blocks. A transaction log is

created and writes are cached. The file system then allocates sufficient blocks for the new

data and the new data is written there. All subvolumes are updated to the new blocks

in case of replication. The old blocks are then removed and freed at the discretion of the

file system. This copy on write combined with the internal generation number allows the

system to create snapshots of the data to be made. This is so because the old data is still

available after the write as the old data is not overwritten. After each copy the checksum

is also recalculated on a per block basis and a duplicate is made to another chunk. These

actions combine to provide exceptional data integrity.

Thus, Btrfs with a very simple underlying implementation of B-trees provides a number

of features which make it a robust and easy to use file system along which deems it to be

file system of choice in the foreseeable future.

3.3 Representation of BTRFS meta data

3.3.1 Overview

All the meta data pertaining to the filesystem are stored in the B-Tree with the interme-

diate nodes containing keys and pointers to other block, while the actual data is stored

only in the tree leaves. The nodes and the leafs when stored onto the disk are packed into

block, each of 4KB, out of which 101 Bytes are reserved for the header and the remaining

3995 Bytes are used to store data. A diagram representing a on disk block is show in

figure 3.3.1

On disk block of 4096 Bytes. Acts as the basic storage unit for BTRF

struct btrfs_header

Header Data

101 Bytes

Figure 3.2: Disk representation of a generic block in BTRFS

Figure 3.3.1 represents a generic on disk block while figure 3.3.1 depicts specific ex-

amples when the data being represented is a tree node and tree leaf respectively.

Header

Block Pointers

Header

64bit block pointers

DataTree Leaf

Tree Node

Items

Figure 3.3: Disk representation of BTRFS Tree Node and Leaf

As shown in figure 3.3.1 every element is keyed, like in a regular B-tree. In the case

of BTRFS trees the items and the data corresponding to them are both stored in the

same block. The items containing the keys (index in B-Tree) are packed together making

it faster to search amongst them. The items start right after the header and expand

towards the data which starts from the end of the block and expands towards the center.

A stack and heap analogy can be used to understand this concept better.

A BTRFS item can be further divided into 3 sections -

• BTRFS key - A 136 Bits tuple composed of a 64 Bit objectid, 8 Bits of type infor-

mation and 64 Bits of offset. The tuple is always stored in CPU native order and

are used as indexes in navigating and forming the B-tree.

• offset

• size - The offset and size together determine the position of the item data relative

to the start of the data section (right end of the block).

Figure ?? gives a diagramatic representation of the item and key structure.

KEY OFFSET SIZE

Helps to locate the data associated with this key.Index elements in the tree

OBJECT ID TYPE OFFSET

Figure 3.4: Leaf Item and the BTRFS key/index

3.3.2 BTRFS Key

The BTRFS key is used to index the elements in the BTRFS tree, with the object id

and type together used to determine the nature of data represented by this key. As a

reminder, keys are only present in the leafs of the BTRFS tree, hence the intermediate

nodes contain no such structures.

The concept of keys can be better understood with the help of the following examples.

The notations used in the below examples are - [objectid, type, offset]

1. [parent inode, DIR ITEM, crc32 hash of filename] - Represents a key which can be

used to point to a directory entery (data represented by this key), which in majority

of cases is a INODE ITEM. If the directory item is present in the root directory

then it’s parent inode number is 256. Object id’s below 256 are reserved for special

keys while those above 256 can be used by inodes.

2. [inode number, INODE REF, parent inode] - This key points to a INODE REF

which is used to store the filename (in UNIX like systems even directories are files)

and name length, amongst other parameters. The inode number can be used to link

this entry with its respective INODE ITEM entry. The prime importance of this

key is to link a inode (can be a dictory of a file) with its parent.

3. [inode number, INODE ITEM, 0] - The data represented by this key points to the

actual chunk of data in the chunk tree. The offset field for this key is not implemented

yet and contains the value 0.

Important - In BTRFS, the data (contents of the file) is stored inside the meta data

objects itself if the data is small enough. Hence for small files the INODE ITEM does

not point to a valid entry inside the chunk tree as the data is stored inside the meta data

block itself. Such entries are denoted by the type BTRFS FILE EXTENT INLINE

Having looked at the basic elements which constitute BTRFS tree, in the next section

we take up a case study were we look at how the meta data changes as new files and

directories are added and deleted from the file system.

3.4 Case study - BTRFS debug-tree output

The offset as explained in ?? is The btrfs-debug-tree tool can be used print the filesystem

meta data. The output is largely divided into 6 sections -

1. root tree - This section correspond to the BTRFS root tree and contains no inter-

mediate nodes but only leafs. The leaves in turn point to various other trees of the

BTRFS filesystem including the root tree.

2. chunk tree - This section corresponds to the BTRFS chunk tree. User data is stored

in chunks and the mapping of various chunks to their respective entries in the device

trees is taken care by the chunk tree.

3. extent tree - Corresponding to the extent tree.

4. device tree - Used to keep track of devices and corresponds to BTRFS device tree.

5. fs tree - This section shows us the files in the filesystem and directly relates to the

BTRFS fs tree.

6. checksum tree - Corresponds to the checksum tree.

We begin our study with fs tree section and slowly progress towards the device tree.

fs tree key (FS_TREE ROOT_ITEM 0)

leaf 29528064 items 14 free space 2700 generation 134 owner 5

fs uuid 4b735dc7-e855-48cd-9855-31ade9a46031

chunk uuid 30525af3-ee43-4b8e-af9c-411fa97024c6

item 0 key (256 INODE_ITEM 0) itemoff 3835 itemsize 160

inode generation 3 size 30 block group 0 mode 40555 links 1

item 1 key (256 INODE_REF 256) itemoff 3823 itemsize 12

inode ref index 0 namelen 2 name: ..

item 2 key (256 DIR_ITEM 1487203495) itemoff 3786 itemsize 37

location key (287 INODE_ITEM 0) type 1

namelen 7 datalen 0 name: myfile1

item 3 key (256 DIR_ITEM 2801880295) itemoff 3748 itemsize 38

location key (293 INODE_ITEM 0) type 1

namelen 8 datalen 0 name: myfile12

item 4 key (256 DIR_INDEX 38) itemoff 3711 itemsize 37

location key (287 INODE_ITEM 0) type 1

namelen 7 datalen 0 name: myfile1

item 5 key (256 DIR_INDEX 45) itemoff 3673 itemsize 38

location key (293 INODE_ITEM 0) type 1

namelen 8 datalen 0 name: myfile12

item 6 key (287 INODE_ITEM 0) itemoff 3513 itemsize 160

inode generation 133 size 205268 block group 0 mode 100644 links 1

item 7 key (287 INODE_REF 256) itemoff 3496 itemsize 17

inode ref index 38 namelen 7 name: myfile1

item 8 key (287 XATTR_ITEM 2038346239) itemoff 3415 itemsize 81

location key (0 UNKNOWN 0) type 8

namelen 23 datalen 28 name: system.posix_acl_access

item 9 key (287 EXTENT_DATA 0) itemoff 3362 itemsize 53

extent data disk byte 13246464 nr 208896

extent data offset 0 nr 208896 ram 208896

extent compression 0

item 10 key (293 INODE_ITEM 0) itemoff 3202 itemsize 160

inode generation 134 size 205321 block group 0 mode 100644 links 1

item 11 key (293 INODE_REF 256) itemoff 3184 itemsize 18

inode ref index 45 namelen 8 name: myfile12

item 12 key (293 XATTR_ITEM 2038346239) itemoff 3103 itemsize 81

location key (0 UNKNOWN 0) type 8

namelen 23 datalen 28 name: system.posix_acl_access

item 13 key (293 EXTENT_DATA 0) itemoff 3050 itemsize 53

extent data disk byte 12582912 nr 208896

extent data offset 0 nr 208896 ram 208896

extent compression 0

We start by focusing our attention on the line number 3 and 4. These 2 lines contain the FS uuid

and the chunk tree uuid. Both these values come after the block header (refer figure ??), the FS uuid

is same as the one present in the super block. We now look at some of the prime items which help us

understand how the content is distributed.

1. item0 and item1 - As described in ??, a combination of INODE ITEM and INODE REF can used

to describe a file. The parent inode and the inode number of this item are the same as the file

always points to its parent directory. In this case however we are in the root directory, the parent

directory of the root directory is the root directory itself. It can also be seen that the object id

here is 256. This is the inode number given to the first file created on disk, with object id’s below

256 reserved for BTRFS objects.

2. myfile1 - There are a total of 6 items associated with myfile1

• item2 - We start of with the directory item, as explained in 3.3.1 the object id in this case

points to the inode of the parent. In this example it is 256, the parent of this file is the root

directory. The offset in our case is the crc32 hash value of the filename. The next 2 lines

below the item2 describe the data pointed to by this key. In this case it points us to inode

item data type with the inode number 287 and also contains some auxillary information like

the filename and its length. We look at the inode item next pointed to by this directory entry

(item6).

• item6 - We jump directly to item6. Here it can be observed that object id is the inode number

of the file, which is 287. The offset as explained in ?? is 0. As mentioned earlier the data in

inode item points directly into the chunk tree indexed by the key [287, INODE ITEM, 0]

• item7 - This is a inode reference item which links the current inode to its parent. It can

clearly be seen from the tuple that the parent of this file is the root directory with the inode

number as 256.

3.5 Important In Memory Structures

This sections tries to explain the various in memory data structures and the way they are linked together

in the BTRFS filesystem.

Please note that only those data structures used in the sysfs implementation have been explained

here, a detailed explaination of all the data structures is beyond the scope of this document.

3.5.1 Super Block

The super block of any filesystem is the starting point for a host of operations and data structure, hence

to maintain redundancy it is mirrored at multiple locations on the disk. BTRFS is no different and the

maximum number of super blocks can be 3, as shown in the figure. 3.5.1

Please note that the exact number of super block copies on a device greatly depend on the size of

the device. Super block 1 and 2 are commonly found in majority of the devices however super block 3

is found on larger devices.

Super Block

1 Block = 4096 Bytes

!6 KB

64 MB

256 GB

Figure 3.5: BTRFS Super Block

3.5.2 Devices

The BTRFS filesystem is capable of working on a pool of devices. Hence it is necessary for the filesystem

to keep track of all these devices, which is does nicely in the form of a double linked list. As our device

monitoring parameters are per device, we have placed our device statistics monitoring variables also

inside this in memory representation.

3.5.3 Relationship between various In Memory data structures

A diagramatic representation depicting the relationship between various important in memory data

structures is shown in figure 3.5.3

Super Block

Root Tree

FS Info

Device 2 Device 1

struct btrfs_root

struct btrfs_fs_info

struct btrfs_devicestruct btrfs_device

Root

fs_info

pointer to link list head

FS Devices

struct btrfs_fs_devices

struct btrfs_super_block

List head to
btrfs device

Device statistics added by us during the course of the project

Kobjects added by us during the course of the project

Figure 3.6: Relationship between various BTRFS data structures

Having looked at the basics of BTRFS, we look at how the SysFs interface has been interfaced with

BTRFS in the subsequent chapters.

Chapter 4

Generic Framework

4.1 Overview

Issues of Next-Generation File Systems

New Architecture

Added Features

Increased Functionality

Component Interdependency

Data Duplication

Table 4.1: Need for a New Framework

The new architecture of the Next-Generation File System does not fit within the scheme of the

framework of the monitoring systems for traditional file systems. This is essentially because the new File

Systems have taken on additional responisbility and quite a lot of features too. For example, the new

file systems are responsible for the management of devices that come under the file system and also the

distribution of data among these devices. Thus the framework also has to account for interdependency

between the components and the need for the same data at multiple locations.

19

4.2 Design

The Design for the Generic Framework basically means the overview of the information that needs to be

collected and its categorization. In this aspect we studied two of the best examples of the new genre of

File Systems that is ZFS and BTRFS. After a brief study we listed down for major aspects that seemed

critical for a Generic Framework. As of now these aspects only cover the critical aspects of these File

Systems but nevertheless cannot be deemed complete. But one of the major design consideration is that

this framework should be easily extendible and hence adding other aspects to this shouldn’t be a major

hurdle.

 Monitoring Framework

 File Systems Devices Health Info. General Info.

Figure 4.1: Monitoring Framework Design

In Figure 4.1 we have a broadview of the categorization of information that needs to be monitored.

The Categorization is done as follows:

1. General Information

This category includes the general information like the number of devices, the number of devices

opened and possibly other information about the File System module like the block size, worker

threads etc.

2. Health Information

This category includes the health specific information of the file system and devices. It is important

to note that information about the devices like its error statistics etc. maybe duplicated from the

devices entry which will also be listed in the Devices category.

3. Devices

This category will contain specific information about the devices. This will contain statistics about

the device including error statistics etc.

4. File System

This category contains the File System instances presently on the system. This will also keep

information about the aspects of the File System like its label, id if any etc. Again it is important

to note that every File System instance will duplicate information about the devices that are under

the said file system.

4.2.1 Design Requirements

Now that we have a skeleton in place let us try to understand the design requirements that will be needed

to ensure correct implementation of the design. The first and foremost is that of the Userspace-Kernel

Interaction. It is understood that the monitoring activity will take place from the Userspace. However,

the monitored data will be part of the Kernel. Hence, the design should account for interaction between

the Userspace and the Kernel. However, at the sametime care must be taken that this does not lead to

security issues.

Design Requirements

Userspace-Kernel Interaction

Hierarchical Structure

Linking of Data

Easy to Use

Extensible

Secure

Table 4.2: Requirements for Generic Framework

Furthermore, the information being monitored should be easily organised into an hierarchical struc-

ture preferably one that follows the broad categories defined earlier. Also, as listed earlier in Table 4.1

there is a lot of interdependent components and hence there is a chance that information needs to be

duplicated. As duplication of data is not always such a good idea there should be a provision of linking

data or other means by which we can avoid duplication. More importantly this should be easy to use

and also extensible. As the File System matures there will be a need to extend the framework for other

such information and this should be easily possible by designing the framework correctly.

4.3 Implementation

As far as implementation is concerned there are to two options. First, is to implement our own custom

interface with which to implement the framework. Alternatively, an existing interface can be used which

best suits our requirements. After a preliminary study we shortlisted a few possible interfaces that we

could use to design the framework.

Existing Interfaces that can be used are

1. sysctl It is an interface for examining and dynamically changing parameters. A system call or

system call wrapper is usually provided for use by programs, as well as an administrative program

and a configuration file for usage of sysctl

2. sysfs It is a virtual file system that exports information about devices and drivers from the kernel

device model to user space, and is also used for configuration. It is similar to the sysctl mechanism

but is implemented as a file system instead of a separate mechanism.

3. procfs It is a special filesystem that conveys information about processes and other system infor-

mation in a hierarchical file-like structure, providing a more convenient and standardized method

for dynamically accessing process data held in the kernel than traditional tracing methods or direct

access to kernel memory.

4. ioctl It is a system call for device-specific input/output operations and other operations which

cannot be expressed by regular system calls.

Possiblities to Implement Framework

Interface FreeBSD Linux Windows

sysctl Yes No No

sysfs No Yes No

procfs Yes Yes No

ioctl Yes Yes Yes

Table 4.3: OS Compatability

4.3.1 Implementation for BTRFS

For purposes of implementation we had chosen BTRFS. As BTRFS works on Linux are main area of

focus was interfaces in Linux. After interacting with the BTRFS Development Community the choice

was narrowed down to ioctl and sysfs. After further delibration this was finalized to sysfs as ioctl was

already being heavily used in the BTRFS code and were becoming too bulky. Also sysfs satisfied all our

design requirements and hence was suitable to develop the framework.[4]

Chapter 5

BTRFS Monitoring Framework

If there is one thing that system administrators regret is the circumstance when they loose all their data.

Regular backups and RAID configuration is all nice, however system administrators need a concrete

way to monitor the filesystem and for application developers to easily build on existing tools. In this

chapter we deal with the various design alternatives we considered and the actual Sysfs implementation

for BTRFS.[1][3]

5.1 Design Framework

In this section we look at the various design decisions that went into the design and implementation of

the monitoring framework.

5.1.1 Static and Dynamic Phases

We have split the Sysfs implementation into Static and Dynamic parts with the static part being called

at module initialization phase while the dynamic part is called every time a device is added/removed

to/from the device tree.

Static Phase

The static phase of the Sysfs code is called as soon as the module is initialized and freed when the module

is removed from the system. The major objective of the static phase are as follows -

1. Register the btrfs kset with top level fs kobject

24

2. Initialize the 3 basic top level directories - devices, health and info.

3. Register these kobjects with the btrfs kset.

It must be noted here that the above directory structure can easily be extended or modified as required

by specific users of the filesystem.

Dynamic Phase

The dynamic phase is responsible for creating entries inside the devices as and when the devices are

mounted and cleaning up the entries when the devices are no longer in use. The following three designs

were implemented and tested for the dynamic phase -

1. Allocating memory using kzalloc/kmalloc when the device is mounted.

2. Using the kobject from btrfs fs info data structure.

3. Adding a kobject to btrfs device data structure and using it.

After implementing and testing both the approaches, we came to the conclusion that the third

approach was more feasible. The prime reason for this decision was the fact that both kzalloc and

kmalloc allocate memory on behalf of the process calling it. In our situation the process allocating

memory was mount while the process freeing the memory was umount. However the memory requested

for freeing could not be loaded after a page fault. Hence the first approach was eliminated.

After working with the second approach for a considerable amount of time, we realized that there

was a flaw in our implementation. If we used the kobject located inside the btrfs fs info, it would be

common for the whole filesystem. This posed a serious problem as

• BTRFS allows us to create a pool of devices associated with a filesystem. Hence the kobject will

be common amongst all the devices.

• Our monitoring framework was required to work on device level. The kobject was of prime impor-

tant as it was the only way we could decipher on which device the Sysfs show and store functions

were called. The reader must note that in our implementation we have set of generic Sysfs show

and store function for all devices as the number of devices are not know before hand and are created

on the fly dynamically.

Due to the above reasons we concluded that it would be best to add a kobject inside btrfs device.

Note: The second approach of placing the kobject can be used in the case when monitoring on

filesystem level is required. So it is proposed that the kobject must not be removed.

struct btrfs_device

Device 0

Device 1

Device 2

List Heads

Pointer from struct btrfs_fs_devices

Variables which store device statistics Kobject

BTRFS Core Data Structures

Sysfs Implementaions

Wr Err

Label

uuid

RD Err

Gen Err

btrfs_device is accessed via the kobjects using the container_of macro

Figure 5.1: Connection between core BTRFS components and the Sysfs interface

5.2 The BTRFS sysfs Interface

The primary goals while designing the Sysfs structure were

• It should be possible to extend it easily in the future.

• Flexibility

Keeping in mind the above points we came up with the following directory structure for Sysfs

• BTRFS

– Devices

∗ hdb1

∗ hdb2

· uuid

· label

· cnt corruption errs

· cnt flush io errs

· cnt generation errs

· cnt read io errs

· cnt write io errs

– Info

– Health

In the above representation hdb1 and hdb2 are BTRFS devices which have been mounted. Every

time a device is mounted/unmounted its respective entry from the Device directory is dynamically

added/removed. The attributes inside each device entry represent the type of errors which this frame-

work in capable of currently monitoring. Figure 5.2 shows a diagramatic representation of the sysfs

directory structure.

Devices Health Info

hdb sda loop1 ..
of

Number

Devices

UUID Label Flush
Error

Generation

Error
Corruption

Error

Read

ErrorError

Write

Figure 5.2: sysfs Structure

Chapter 6

Device Statistics

6.1 Keeping count of the disk errors

The device statistics patch provided by Mr. Stefan Berhans aims to enable the system administrator

using BTRFS to keep track of device errors. Knowing the number of disk errors that have occured, the

administrator can decide whether the disk is robust or not, and accordingly decide whether to replace

the system disk or not. This feature is very much required, as not knowing the health of the disk could

result in serious loss of data at a later stage, beyond which the loss would not be recoverable.

The errors being counted are:

1. Read Errors

2. Write Errors

3. Flush Errors

4. Corruption Errors

5. Generation Errors

Each of the above errors do not necessarily imply that the disk is failing, but frequent and high

number of occurrances of these errors does indicate that the problem is in the hardware and a change

might be needed.

28

BTRFS

DEVICE

Errors

Write

Read

Errors

Generation

ErrorsErrors

Corruption

Errors

Flush

Figure 6.1: Device Stats

6.1.1 IOCTL vs Sysfs

The errors are being tracked within the kernel, and for it to be useful, it needs to be exported to userspace,

so the system administrator can read them. This was initially done using an IOCTL interface, where

each error was associated with an IOCTL command. A simple C program can use this interface to read

the error counts. It is inconvenient to always have to write a C program to import any kind of data into

userspace. Thus, BTRFS developers decided to do away with IOCTL and instead have a simpler and

flexible interface via Sysfs.

Sysfs simply provides a directory structure with files associated with kernel data. The kernel writes

to these files via the interface and the user reads these files for the exported kernel data. The reading of

the data also invokes the Sysfs interface. Each file in this structure contains one value. The user simply

performs a cat operation on the file to read the value.

In our sysfs implementation for device statistics, we associate each type of error with one file in the

directory structure. Thus, if the administrator wants to know the number of write errors for a particular

BTRFS device, he simply has to run cat on the appropriate file in the sysfs structure.

6.1.2 Patch Details

All the five errors - read,write,flush,corruption,generation - are kept track of via five variables in struct

btrfs device. Each occurance of the error simply triggers an increment operation on the appropriate

variable.

The error is counted whenver any of the above operations in BTRFS returns an input/output error.

An input/output error is indicated by a return value of -EIO. For example, if a write on a BTRFS device

fails, the operation or it’s function returns -EIO, a negative value. When this happens the variable

keeping track of write errors is incremented by 1. Whenever the system administrator performs a read

operation on the sysfs file for write errors, the sysfs interface code is invoked, and the newest value is

shown. When the device is unmounted, the updated values are written to the device tree on the disk.

When mounted again, the sysfs initialization code for the device is invoked, which takes care of retrieving

the previously stored values.

On the sysfs interface side, each error variable has associated with it a show function. This function

is invoked when the user performs a read operation on the file associated with that particular variable.

It is passed as parameter a kobject variable,from which the function accesses the error variables within

struct btrfs device. The value that is read is the latest value of that variable, and is printed for the user

to see.

Within struct btrfs device are the five variables associated with the five error counts. We simply have

print this value for the user to see. This printing is invoked when the user does a read operation on the

files associated with the error variables. Specifically, a generic show function is invoked which calls the

show function of the specific variable. show functions are the essence of the sysfs interface.

As said before, the sysfs initialization function takes care of setting up the interface, creating the

directory structure, retrieving previously stored values, ’registering’ the show functions etc.

Chapter 7

Device Statistics Patch - Testing

7.1 Approach and Design - Use of Layered OS structure

The device statistics patch counts the number of read,write,flush,corruption and generation errors. In-

order, to test the correctness of the patch, these errors need to be generated on a BTRFS device and

check if the values returned in the Sysfs files are correct.

Figure 7.1: Layered OS Structure

As shown in Figure 7.1The operating system has a layered structure. It means that the file system

uses the services of the software beneath it in the structure. The layer below the file system, is the block

31

device layer. Thus, whenever the FS performs a read or a write, it invokes the services of the block

device layer. A block device is a device that communicates data as fixed-size blocks. Each block device,

like a hard disk, has a driver that interacts with the file system layer.

Typically, a read/write operation on the FS translates to a corresponding read/write operation in

the driver. If the read/write in the driver results in any error, the error code is returned back to the FS

layer. The FS layer will either act upon the error, or choose to simply return the error code to the layers

above, where it might get handled.

Thus, inorder to test the device statistics patch, we choose to force the layer below - the block device

layer - to return an IO error code, so that BTRFS registers it as a genuine read/write error and updates

the appropriate error count. Effectively, we simulate a read/write error at the block layer, fooling the

FS layer to think that a genuine error has occured.

7.1.1 Ramdisk

The simulated-error method described above can be done using a simple ramdisk implementation. A

ramdisk is a block device just like a hard disk, but it uses the RAM as it’s memory. In other words, a

read operation on the ramdisk fetches data from the RAM allocated to the ramdisk, similarly, a write

operation writes data to the RAM. In effect, a section of RAM behaves like normal hard disk. In this

section of memory read/write occurs in units of block sizes as dictated by the FS above it, and the

read/write in this area is handled by the corresponding block driver written for it. A ramdisk of 1

Megabytes, will use 1 MB of contiguous memory from RAM for it’s operations. This 1 MB of RAM is

viewed by the higher layers just like any other hard disk, and likewise it gets an appropriate entry in

/dev. Just like any other hard disk, we can format it with a file system, mount it, create and delete files

in it etc. The user is abstracted from the fact that he is working on a section of RAM and not a true

block device.

For testing our patch, we fashioned a simple ramdisk which utilizes 256 MB of contiguous RAM.

The driver of the ramdisk has operations to read/write data to and from this 256 MB section. These

operations are carried out in blocks of size 512 Bytes. Under normal operation, this disk acts like any

hard disk and can be formatted with any FS. We however, need this disk to act as an erraneous device, so

that the FS layer above it, thinks that the disk is at fault, and records the read/write errors. If the patch

is working, the Sysfs interface files should show the correct number of errors that were simulated this way.

Note: The minimum device size for BTRFS is 256 MB. Hence in order to obtain a contiguous mem-

ory of 256 MB using vmalloc we were required to pass vmalloc=256 MB as a boot parameter to linux

kernel at boot up. This had to be done because the kernel always has a upper bound on the amount of

virtual memory that can be allocated. This threshold was too small for us and had to be changed.

But at the same time, we also need to control the frequency of these errors. We don’t want the

ramdisk to always return an error code, because that would also cause basic tools like mkfs.btrfs to fail

. We wish to be able to command the ramdisk when to return an error and when to function properly.

This we achieve by adding a simple IOCTL interface to the ramdisk driver. We run a C program, that

uses this interface to toggle on/off certain flags in the driver code, via IOCTL commands. Based on the

state of the flags, the driver behaves erraneously or behaves as a normal device.

For example, if we use a C program to use the IOCTL interface of the ramdisk to set the write error flag

to 1, then for all future write operations on the ramdisk, the driver will return -EIO, indicating an IO

error. We can use the same interface to clear write error flag to 0. When this is done, the ramdisk will

operate correctly,without returning errors. Similarly we have flags associated with each type of error.

Thus we can command the ramdisk to simualate any error at any time we want.

7.1.2 Final Testing

Read/Write/Flush Errors Testing steps

1. Add vmalloc=256 MB or greater to boot options of the linux kernel. For example, the options to

your linux kernel and boot time would look something like

linux /vmlinuz-3.0.4 root=/dev/mapper/SH-root vmalloc=256M ro single Kindly refer to note in

7.1.1 for explaination.

2. Insert the ramdisk module. The ramdisk initially performs normally. When the module is inserted,

the ramdisk, like any block device becomes visible under /dev directory of linux.

3. Format the ramdisk as a BTRFS device using mkfs.btrfs. Thus we have made the ramdisk a BTRFS

device. What this means is, all read/write operations on the ramdisk will call the corresponding

read/write operations of BTRFS, which then translates to read/write operation implemented within

the ramdisk driver.

4. Mount the ramdisk device. At this stage, the Sysfs error files should show zero errors. Mounting

the device triggers creation of Sysfs file structure of the mounted device. Associated with every

device is a directory, under which we have the files that store the error counts maintained by the

patch.

5. Run the C program to toggle the error control flags of the ramdisk via IOCTL commands. Having

set the appropriate flags, the driver will now return IO error code for read/write operations.

6. Perform random read/write operations on the mounted device. Since the driver returns IO error

codes, the BTRFS layer thinks that the device is at fault, and thus starts counting the read/write

IO errors of the device. This can be verified via the Sysfs interface files for read and write errors.

This testing procedure can be used to simulate read/write/flush IO errors.

Thus we have used the layered structure of the OS, to test the patch.

User operations on the ramdisk first invoke the functions in the Virtual File System or VFS. This call

invokes the appropriate BTRFS function because we have formatted the ramdisk as a BTRFS device.

The BTRFS function then invokes the read/write operations within the driver code of the ramdisk. It

is at this point that we simulate the error. The driver functions can be made to work normally or be

forced to return an error code, at our will.

Corruption Errors Testing steps

1. Create a BTRFS device by using mkfs.btrfs and mount it.

2. Overwrite the device file of the device,under /dev by using the dd command. This dumps random

data on the device file, while it is mounted. This causes the data on the device to get corrupted. The

BTRFS layer records these corruption errors and increment the appropriate variable for corruption

error.

This is a corruption error, because while the device is mounted, the data in it gets written on, from

a source of which the BTRFS layer is not aware. The disk dump operation thus corrupts the data.

This corruption is detected using the checksum values. Sine the data is overwritten, the data and the

checksum fail to match, causing the BTRFS layer to think that the data is now corrupt. If the patch

is working, this causes an increment in the variable that counts the number of corruption errors. This

change become visible in the Sysfs interface file for corruption error.

The above 2 testing procedures verify the device statistics patch and it’s Sysfs interface.

Bibliography

[1] Btrfs sysfs git repository. http://goo.gl/uLWgE.

[2] Btrfs homepage. http://btrfs.ipv5.de.

[3] Linux source code git repository. http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git.

[4] Patrick Mochel. The sysfs filesystem. www.kernel.org/pub/linux/kernel/people/mochel/doc/papers/ols-

2005/mochel.pdf.

[5] Oracle Solaris. Zfs homepage. http://hub.opensolaris.org/bin/view/Community+Group+zfs/.

36

	List of Tables
	List of Figures
	List of Symbols
	Introduction
	Background
	Definition of Problem Statement

	File Systems - Present and Next Generation
	The need of a new generation FS
	Future Features
	Snapshots and Copy-On-Write
	Integrated Volume Manager
	Multiple RAID levels
	Online fsck,resizing,device management
	Checking for data corruption

	File system comparisons

	BTRFS
	An Overview of BTRFS
	BTRFS Design
	Representation of BTRFS meta data
	Overview
	BTRFS Key

	Case study - BTRFS debug-tree output
	Important In Memory Structures
	Super Block
	Devices
	Relationship between various In Memory data structures

	Generic Framework
	Overview
	Design
	Design Requirements

	Implementation
	Implementation for BTRFS

	BTRFS Monitoring Framework
	Design Framework
	Static and Dynamic Phases

	The BTRFS sysfs Interface

	Device Statistics
	Keeping count of the disk errors
	IOCTL vs Sysfs
	Patch Details

	Device Statistics Patch - Testing
	Approach and Design - Use of Layered OS structure
	Ramdisk
	Final Testing

