
Improvements to COEP Moodle

A Project Report

Submitted by

Harshadkumar H. Waghmare 111003043

Pankaj A. Bagul 111003037

Rahul V. Waghamare 111003047

in partial fulfilment for the award of the degree

of

B.Tech. Computer Engineering

Under the guidance of

Prof. Abhijit A. M.

College of Engineering, Pune

DEPARTMENT OF COMPUTER ENGINEERING, COLLEGE

OF ENGINEERING, PUNE-5

May, 2014

DEPARTMENT OF COMPUTER ENGINEERING,

COLLEGE OF ENGINEERING, PUNE

CERTIFICATE

Certified that this project, titled “Improvements to COEP Moodle” has been successfully

completed by

Harshadkumar H. Waghmare 111003043

Pankaj A. Bagul 111003037

Rahul V. Waghamare 111003047

and is approved for the partial fulfilment of the requirements for the degree of “B.Tech.

Computer Engineering”.

SIGNATURE SIGNATURE

Prof. Abhijit A. M. Dr. J. V. Aghav

Project Guide HOD

Department of Department of

Computer Engineering Computer Engineering

and Information Technology, and Information Technology,

College of Engineering Pune, College of Engineering Pune,

Shivajinagar, Pune - 5. Shivajinagar, Pune - 5.

Abstract

Moodle is an open source Learning Management System(LMS). Moodle has rich set

of functionalities related to site management, user management and course management.

Some typical features of Moodle are Assignment submission, discussion forum, files down-

load, grading, online quiz, online news and announcement,etc. Moodle modular system

provides many types of plugins like activities, themes, question types, assignments.

College Of Engineering Pune (COEP) Moodle uses many facilities provided by

Moodle like assignment submission, discussion forum, online quiz, etc. While using this

system administrators found some special requirements and improvements in existing moo-

dle. Specific requirements of this system are like static bulk management of courses, simple

multiple choice question type plugin, grader report enhancement for user files and student

gradebook for all the courses she is registered. The implementation of these requirements

will help the administrators to use COEP moodle easily and according to their requirements.

Contents

List of Figures iii

List of Code snippets iv

1 Introduction 1

1.1 Moodle . 1

1.1.1 COEP Moodle . 1

1.2 Improvements to Moodle . 1

1.2.1 Simple Multiple Choice Subplugin . 2

1.2.2 Static Management of Courses . 2

1.2.3 Grader Report Enhancement for user files 2

1.2.4 Student Gradebook . 2

2 Overview Of Moodle API 3

2.1 Moodle . 3

2.1.1 Introduction . 3

2.2 Moodle API . 5

2.2.1 Access API . 5

2.2.2 String API . 6

2.2.3 Page API . 7

2.2.4 OUTPUT API . 8

2.2.5 Moodlelib API . 10

2.2.6 Gradebook API . 10

2.2.7 File API . 10

2.2.8 Form API . 10

2.3 Modular Object Oriented Dynamic Learning Environment (Moodle) Database 11

2.3.1 Data Definition API . 11

2.3.2 Data Manipulation API . 11

i

3 Design And Implementation 13

3.1 Simple Multiple Choice Questions SubPlugin 13

3.1.1 Introduction . 13

3.1.2 Implementation . 13

3.2 Bulk Manage Courses . 18

3.2.1 Introduction . 18

3.2.2 Implementation . 18

3.3 Grader Report Enhancement for user files 26

3.3.1 Introduction . 26

3.3.2 Description . 26

3.3.3 Implementation . 27

3.4 Grade Report for Student . 30

3.4.1 Introduction . 30

3.4.2 Implementation . 30

4 Conclusion and Future Scope 34

4.1 Conclusion . 34

4.2 Future Scope . 34

Appendix 34

A Acronyms 35

B Installation of Moodle 36

ii

List of Figures

2.1 Modular Object Oriented Dynamic Learning Environment (Moodle) Basic

Architecture Diagram . 4

3.1 Simple Multichoice Database Table . 14

3.2 Popup window of question type selection after clicking on add question button 16

3.3 Adding Simple Multichoice Question page 16

3.4 Preview of question after completely adding 17

3.5 The current page for managing the courses, moodle/course/manage.php . . . 20

3.6 New file for doing bulk operations for categories, moodle/course/smanage.php 20

3.7 Summary of actions taken place in bulk for the categories, actioncat.php . . 21

3.8 Categories after the action, by actioncat.php, on page smanage.php 21

3.9 The current manage.php file, for managing courses 23

3.10 smanage.php, for courses in a selected category 24

3.11 staticoperation.php, the page dedicated to make bulk actions over courses in

selected category . 24

3.12 action.php, the summary page of actions applied to the courses 25

3.13 Before Grader Report Enhancement . 28

3.14 After Grader Report Enhancement . 29

3.15 Pop window for Download . 29

3.16 Link for grade report on profile page: . 32

3.17 Grade report page : . 32

3.18 Pdf export of grade report : . 33

iii

Listings

2.1 code snippet from moodle/mod/assign/db/access.php[4] 5

2.2 Language strings from moodle/lang/en/moodle.php[6] 7

2.3 moodle/course/action.php[17] . 7

2.4 moodle/course/smanage.php[16] . 8

2.5 output api content from actioncat.php[18] 9

3.1 Code snippet from edit simple multichoice form.php[10] 15

3.2 Code snippet for hiding a category[18] . 19

3.3 Code snippet for deleting a course[17] . 22

3.4 Getting files and making url for each obtained file[21] 27

3.5 Function enrol get all users courses()[24] . 30

3.6 Getting final grade for that course[24] . 30

3.7 Generate PDF file and download in browser[25] 31

B.1 The apt commands to install all the required packages 36

iv

Chapter 1

Introduction

1.1 Moodle

Moodle has many features typically of an e-leaning platform. Moodle’s basic structure is

organized around courses, these are areas within moodle where teacher can post learning

resources and activities to students. A user with the role of Administrator is typically in

charge of a Moodle site once it has been installed, although some tasks may be given to

others by assigning them a role such as Manager. The M in Moodle stands for modular.

The easiest and most maintainable way to add new functionality to Moodle is by writing

one of these types of plugin.

1.1.1 COEP Moodle

College Of Engineering Pune (COEP) Moodle uses many facilities provided by Moodle

like assignment submission, discussion forum, online quiz, etc. COEP also uses Moodle

for managing courses across all the departments of institute. Moodle provides a number of

ways of managing authentication, called authentication plugins, whereas COEP Moodle uses

LDAP server for authentication.

By the perspective of user like administrator, student and teacher it is required to

have the software be user-friendly and customizable according to her use. Therefore some

of the requirements observed necessary by administrators of COEP Moodle are selected for

implementation.

1.2 Improvements to Moodle

Moodle seems perfect in its design and implementations, but there are some features that

needs to be added or some of them are needed to be changed in design to achieve maximum

1

throughput in less work. Some of those corrections were chose and implemented.

1.2.1 Simple Multiple Choice Subplugin

The current scenario of adding Multiple Choice questions[9] to a quiz are pretty vast. So,

making it easy, i.e. putting a question and adding required options with one answer correct

should add a question and the type will be Simple Multiple Choice questions type.

The thing that makes the current scenario of adding multiple choice questions vast is

the feedback. A lot of feedback fields are created, i.e feedback for question, for each answer,

and to the overall question. More about the task is discussed in further chapter 3.2 .

1.2.2 Static Management of Courses

Management of courses is the job of Manager or Administrator of Moodle. In the recent

versions of course management pages, the single button action is utilized which refreshes the

page on each action, which makes the job slow. So a job of designing a plugin was required

so that the all of these actions to be done would be recorded and on clicking submit button

all the actions should take place.

The current architecture of management of plugins in moodle had to be changed.

Now on completion of task, the actions are recorded and can be acted upon in one click.

1.2.3 Grader Report Enhancement for user files

The main task of Teachers in Moodle, is to grant grades to students based on their work.

The same is done in moodle in a form that takes input from teachers and on submitting

the grades would be assigned. In current Moodle page, Teacher has to look at the students

code by going to his submission page then download his work and then give grades on this

page. Bulk grading is not possible with this approach as teacher will have to navigate a lot

throughout.

So a link was needed in the same input form. A link which would directly download

the work submitted by the students.

1.2.4 Student Gradebook

Moodle does not support to get the grade report of each student. i.e. the student’s marks

of the semester for all the subjects.

So task was to design a page, which will help students to see their current status of

each courses as well as could export the semester report.

2

Chapter 2

Overview Of Moodle API

2.1 Moodle

2.1.1 Introduction

Modular Object Oriented Dynamic Learning Environment (Moodle)[1] as the full-form

specifies the Moodle code is Modular and Object Oriented. The modularity is gained by

the use of API’s in Moodle[2]. There are API’s in moodle for nearly everything, and these

API’s are grouped as core API’s and complementary API’s. Core API’s[2] are the ones which

were developed on the base code of Moodle, while complementary API’s are developed while

writing a plugin for Moodle. These plugins serve the purpose of customization because they

can be installed manually and to the need, i.e. installing all the plugins is not mandatory,

but depends on need of the user. For example, plagiarism plugin. These complementary

API’s are also known as Activity module API.

Moodle is very much flexible and customizable in the working environment. The

varied weekly activities such as assignments, quiz, adding some study material, adding link

etc. makes moodle flexible to use. It is on the verge of becoming the complete platform as

the most varied dynamic learning systems. The customizability comes from the installation

of required plugins.

3

Figure 2.1: Modular Object Oriented Dynamic Learning Environment (Moodle) Basic Architec-

ture Diagram

4

2.2 Moodle API

Introduction

The Application Programming Interface (API) are developed in the sense to add modularity,

and all of these API’s are written Object Oriented. These API provides different tools in

moodle scripting and which are then used in moodle plugins to add new feature to enhance

the user customizability. The Core API are used everywhere in the moodle code, and thus

are used in basic code design. For example, the Access API deals with the current user

log-ins, and her capabilities at the particular page.

We found following APIs useful for our work, Access API, String API, Form API,

File API, Page API, Output API, Data manipulation API, Gradebook API and more[2].

2.2.1 Access API

Access API[3] deals with granting the access of Moodle features to the logged in user by

checking her context and capabilities that are defined while defining the roles. Thus access

API works as the means of checking if the user has capability to even view this feature, if

yes then allow the access to that feature. Thus though some users can access a particular file

that also consists of some administrator features, she’ll not be even able to see/sense those

features, that’s the level of Moodle security which serves the purpose of restricting access.

This type of security makes it hard to crack by Mal-users.

The defining of new capabilities is done while writing the code of the particular

plugin in its db/ directory in the file named access.php, while granting of these capabilities

is done at the installation of the plugin. Access API has the sequence of features predefined,

i.e. to define the capabilities to fetch the contexts with the help of some functions. Defining

of capabilities of done in db/access.php. The various macros that are required to define in

this file are defined in moodle/lib/accesslib.php file, which is the library file. Therefore the

file would contain all the required functions necessary for this API are in accesslib.php, thus

we can say that Access API is written in accesslib.php.

Listing 2.1: code snippet from moodle/mod/assign/db/access.php[4]

$capabilities = array(

’mod/assign:view’ => array(

’captype ’ => ’read’,

’contextlevel ’ => CONTEXT_MODULE ,

’archetypes ’ => array(

5

’guest’ => CAP_ALLOW ,

’student ’ => CAP_ALLOW ,

’teacher ’ => CAP_ALLOW ,

’editingteacher ’ => CAP_ALLOW ,

’manager ’ => CAP_ALLOW

)

)

);

The capabilities array as defined in db/access.php. The name of the capability is of type

plugintype/pluginname:capabilityname. The file is run at the installation phase of the plugin,

so once the capabilities are defined, those are stored in database table capabilities.

The important functions are then defined in accesslib.php library file. Once the

context is stored in database, it can be fetched from the use of Moodle functions in various

ways. An exception is thrown if context can not be created. The main class written to

get context is class context defined in lib/accesslib.php. The various inherited classes from

this class like class context system from system context, class context course to get course

context. All of these classes have a function instance which returns the context if already

present, else returns a dml exception, which means the record is not found in database. The

default context is also granted if SYSCONTEXTID is defined and is allowed to be cached.

Defining the context and then fetching the context does not solve the problem of

access control. So the various functions are defined which returns Boolean as of the result

if the user has that capability or not. For example, function has capability() and function

require capability() are the two functions which does the job. function require capability()

calls function has capability(), with adjusted arguments.

In this way serving of access control is done by Access API, which is the most used

and most important Core API in Moodle design.

2.2.2 String API

On the topic of localization of web, moodle ensures every possibility to add the local language

plugin as Language Package (langpack), to improve localization. Currently moodle consists

of over 90 langpacks and the count is not constant. Thus every locality is ensured to take

benefit from Moodle.

This localization is possible because of the string API[5], defined in moodle. The

API deals with how you want to display the text strings in User Interface.

6

There are two types to define the strings, one is to define the strings in main

moodle/lang/ directory, and the other one is to create the lang/ directory in the plugin

directory. The lang/ directory consists of the lang packs with the acronym-ed names of

directories as the language content. The function of the files from these directories is that

to store the strings with an identifier as the key of associative array.

Listing 2.2: Language strings from moodle/lang/en/moodle.php[6]

$string[’courseshown ’] = ’Course successfully shown’;

$string is an associative array with the key as ’courseshown’ and value as ’Course successfully

shown’.

The function that retrieves this value from and plays most important role is function

get string(). It is defined in file moodlelib.php, in an interface string manager, which returns

the localized string.

For example, get string(’someidentifier’); will first check if there is any local direc-

tory, else will try to search the key identifier in moodle/lang/ directory. The argument can

also be given as the language name, to let get string() look for that identifier string in that

specified language directory. The default language directory is ’en’ (English) language as

the default locale.

2.2.3 Page API

The HyperText Markup Language (HTML) content before rendering need to set up cor-

rectly. The PAGE API[7] is very important for theme developers, as the page setups are

different for different themes. Thus settings of the information about the HTML page is

done by PAGE API, and the information is stored in the Global Variable, $PAGE, which

is always checked while setting the page. All this set information is then rendered to the

OUTPUT API[8], which then shows the HTML content on the web page.

Listing 2.3: moodle/course/action.php[17]

$PAGE ->set_url(new moodle_url(’/course/action.php’));

$PAGE ->set_context(context_system :: instance ());

require_login ();

The most important thing to set in the PAGE API, is to set url of the page, which is

must. Then setting of page context is done, that will define the context for this page. The

importance of setting the page context is that, now every page will have some default required

7

capabilities to view the page. This crosschecking is done by require login() function defined

on the next line. The require login also set the basic page settings in $PAGE variable. The

page layout can also be set using page API, default layout is ’base’, which is normal page

without blocks. ’Standard’ layout is the one with navigation bars on both the sides of the

page, it is recommended for most of the pages with general information.[7]

These settings should be done before starting the output, i.e. before defining the

OUTPUT API.

2.2.4 OUTPUT API

OUTPUT API[8] is pure HTML based functions containing API. Whatever the content that

we see on any page of moodle, is all rendered by this OUTPUT API. The various classes

on this API implements the representation of HTML texts in the web page. The classes

contains the rich metadata which is used by rendered by output renderers to generate the

output.

The functions which has html as the prefix, are part of this OUTPUT API. Consider

the following code snippet, from file moodle/course/smanage.php, which creates a form,

Listing 2.4: moodle/course/smanage.php[16]

echo $OUTPUT ->paging_bar($totalcount ,

$page , $perpage , $pagingurl);

echo html_writer ::

start_tag(’form’,

array(’id’ => ’movecourses ’,

’action ’ => $actionurl ,

’method ’ => ’post’));

echo html_writer ::

start_tag(’div’);

echo html_writer ::

empty_tag(’input ’,

array(’type’ => ’hidden ’,

’name’ => ’sesskey ’,

’value ’ => sesskey ()));

foreach ($searchcriteria as $key => $value) {

echo html_writer :: empty_tag(’input’,

array(’type’ => ’hidden ’,

’name’ => $key ,

’value ’ => $value));

8

}

echo html_writer :: table($table);

echo html_writer :: end_tag(’div’);

echo html_writer :: end_tag(’form’);

echo html_writer :: empty_tag(’br’);

The $actionurl and $pagingurl are set to new moodle url(’smanage.php’) and new moo-

dle url(’/course/smanage.php’, array(’categoryid’ => $id, ’perpage’ => $perpage) + $searchcri-

teria). $table variable is initialized with some more HTML content required to set fields of

table. This simple form is created for moving the courses in a particular category, The

actionurl given is the same filename thus there is initial check begin done in the same file

about the variables passed, i.e. if they are received or not using optional param() function.

And then the required action is taken in that function. The session key is passed and is

then checked while receiving the variables arguments, this is to avoid any other redirects to

the same action, like by using Cross Site Scripting (XSS) attacks. These attacks are then

saved by optional param(), by giving the last argument as the expected type of the passed

value, as defined in moodlelib.php library file. Thus the scripts will not be run if given in

url context, unless PARAM SCRIPT is expecting. But there is no such macro defined in

moodlelib.php, so XSS attacks[27] are saved.

The rendering of HTML output is done with the help of a global variable $OUTPUT,

which is the global object, and for rendering the HTML content. For example, consider the

output API content from actioncat.php,

Listing 2.5: output api content from actioncat.php[18]

echo $OUTPUT ->header ();

echo $OUTPUT ->notification(

get_string(’categorymoved ’), ’notifysuccess ’);

echo $OUTPUT ->continue_button("smanage.php");

echo $OUTPUT ->footer ();

$OUTPUT->header() outputs the header in HTML content, set by $PAGE. $OUTPUT-

>notification() function is used as notify event. the second argument, ’notifysuccess’ will

print the notification string in green font color, and ’notifyproblem’ will print it in red font

color. Adding a continue button is as easy as adding this line $OUTPUT->continue button().

And finally footer is printed.

9

2.2.5 Moodlelib API

It is the central library file of miscellaneous general-purpose Moodle functions. It contains the

functions like required param, optional param which are responsible for parameter passing

while navigating from one page to other.

require login this function checks that the current user is logged in and has the required

privileges, which is defined in this library file.

get string this function returns localised string specified by $identifier.

In this way, functions defined in this file are used for user preferences, time, login, plugins

and strings.

2.2.6 Gradebook API

This API allows to read and write from gradebook with interface for detailed grading in-

formation. The library of this API contains the grade grade class which is mapped to

grade grade table in database and contains detailed information for different grade items

for users. grade item is the class which maps grade item for the user. grade tree is the class

representing a complete tree of categories, grade items and final grades, it generates and

stores the hierarchical array of all grade category and grade item from course id that is for

a course.

2.2.7 File API

This API is for managing all the files stored by Moodle. Storage of files is conceptually in file

areas, where file area is described by context id, full component name, itemid. Serving files to

user is handled by file serving script, which is pluginfile.php. moodle url::make pluginfile url()

function is used to generate url for file serving, which takes the arguments of contextid, com-

ponent, file area, itemid and filepath with filename. File API is also responsible for managing

file upload by user through the use of filepicker, filemanager and editor form elements.

2.2.8 Form API

For submitting data in Moodle, it requires to have web forms, which is managed by this

10

API. It supports all HTML elements with improved accessibility. formslib.php - library of

classes for creating forms in Moodle, which contains abstract class moodleform, which is the

base class for all the forms. This library contains the functions like set data(), get data()

which are manage the submitted data for further processing. Generally new form is created

by extending moodleform class and override the definition to include form elements which

are required. Basic form elements are button, checkbox, radio, text, HTML, etc. Also it has

custom form elements like date time selector, filepicker, filemanager, etc.. All these form

elements are defined in ’lib/form/’, where for each element different php file is written.

2.3 Moodle Database

Moodle database consists of many tables of which some are core tables and the tables be-

longing to each plugin. The Moodle database structure is defined in install.xml files inside

db folder in each plugin. lib/db/install.xml defines the tables used in Moodle core. Further

the database abstraction layer is introduced in Moodle that leads to,

• Data Definition API

• Data Manipulation API

2.3.1 Data Definition API

The objective of this API is to have well defined set of functions to handle all the DB struc-

ture by executing the correct SQL statements required by underlying Retational Database

Management Systems (RDBMS) used, that are supported by Moodle. Database manager

instance is responsible for all database structure modification in the process of installation

and upgrade. It consists of functions like install from xmldb file, create table, drop table, etc.,

which are generating SQL statements to execute in database used.

2.3.2 Data Manipulation API

The library of this API contains all data manipulation functions to interact with database,

moodle database is the main abstract class for the functions like get record, get record sql,

etc. All these functions are accessed using global $DB object. Functions of the form *** sql

take SQL query as parameter and provide the appropriate data, while to have cross-db

11

compatibility helper functions are used to build the SQL fragments which are of the type

sql ***, other functions use table names and conditions to formulate SQL query and then

operate it on database. Thus for retrieving and updating data from database these data

manipulation functions are used accordingly.

12

Chapter 3

Design And Implementation

3.1 Simple Multiple Choice Questions SubPlugin

3.1.1 Introduction

The flexibility in Moodle is achieved by adding all types of Teacher-Student co-ordinated

tasks in the weekly format like adding a quiz, notes, url link, assignment, etc. Further

flexibility is achieved by giving more types of subplugins in each of these tasks. For example,

quiz plugin contains the subplugins as yes-no type questions, multiple choice questions[14],

essay[12], matching[13], etc. Now Moodle has become so advanced and vast over the time

that there are a lot of options while creating such daily activities. Over the time, adding a

multiple choice question has become so detailed that it became the cumbersome task to add

questions.

So A new subplugin was required to add in the code, so as to accomplish the task

of adding multichoice questions as easy as adding a question and putting some options with

one answer correct, which serves the same purpose. Thus A simple multiple Choice Plugin

was developed in this sense, and in order to make the things easier and sophisticated with

less options while putting the questions.

3.1.2 Implementation

This is question type plugin in Moodle, basic structure of this plugin type was same as

multichoice question type [11], [14] plugin already present in the question/type/ folder. Ba-

sically currently available multichoice question type form contains feedback fields for almost

all the form elements like question text, each choice option and extra filed of combined feed-

back. In new plugin type of question, these feedback fields are removed and single choice

correct option is kept, whereas multiple answer choices can be correct is available in existing

13

Figure 3.1: Simple Multichoice Database Table

multichoice question type.

Brief Description of Implementation :

• simple multichoice folder is added in question/type folder.

• In this folder, edit simple multichoice form.php is the file form defining the form for

adding question.

• question.php file contains question definition classes and questiontype.php contains the

extended class of question type class defined in questionbasetype.php .

• Database (db) folder contains install.xml for table defined for simple multichoice ques-

tion and lang folder [15] contains the strings defined for this question type.

Database (db) folder This folder contains the install.xml file, which has the question simple multichoice

table defined in it. Fields included in it are

id : primary key of table,

question : foreign key referencing to question.id,

answers : comma separated list of question answers ids,

shuffleanswers : for whether the choices to be randomly shuffled or not.

answernumbering : type of answer numbering.

lang folder : Strings for component ’qytpe simple multichoice’ and language ’en’ .

pix folder : icon file to be used in popup window of question type selection.

edit simple multichoice form.php : It contains the class qtype multichoice -edit form

which is extended from question edit form class defined in edit question form.php, the

14

function definition inner() is responsible for the form definition of question edit form,

it contains the element to be included in question edit form for this particular question

type.

Listing 3.1: Code snippet from edit simple multichoice form.php[10]

protected function

get_per_answer_fields($mform ,

$label ,

$gradeoptions ,

&$repeatedoptions ,

&$answersoption) {

$repeated = array ();

$repeated [] =

$mform ->

createElement(’editor ’,

’answer ’,

$label ,

array(’rows’ => 1),

$this ->editoroptions);

$repeated [] =

$mform ->

createElement(’select ’,

’fraction ’,

get_string(’grade ’),

$gradeoptions);

$repeatedoptions[’answer ’]

[’type’] = PARAM_RAW;

$answersoption = ’answers ’;

return $repeated;

}

The function given above defines the per answer fields, which are answer editor, select

element for answer, is true or false in terms of score that is 100% or 0%, while the

feedback element is not available.

15

Figure 3.2: Popup window of question type selection after clicking on add question button

Figure 3.3: Adding Simple Multichoice Question page

16

Figure 3.4: Preview of question after completely adding

17

3.2 Bulk Manage Courses

3.2.1 Introduction

The current scenario of managing the courses somewhat lacks the optimal methods to do

the managing tasks easier. In the current context, the use of action buttons, i.e. refreshing

the page on each click seems infeasible on slow connections for managers.

Rather than taking immediate action and reloading page, it is more preferred to

store the actions and then in one click do all the selected operations. Though this looks easy,

but in the current coding styles, as the single button actions are implemented, it becomes

hard to write our code and then merge with the current implementation of Moodle. But the

current implementation looks so complete, to make that merge happen. So we created our

own files added our action there and then did a small change in current code to complete

this task.

3.2.2 Implementation

The current file that supports management of courses is manage.php located at moodle/-

course/manage.php. The single file is written to manage course categories as well as courses

in those categories. So, first the manage.php page will show the list of categories in a

html table with the attributes as course categories, No. of courses, Edit actions, and a

dropbox menu of move to courses. The edit options here are settings, delete, hide or show,

cohorts, moveup or movedown. Technically each of these edit options are the action button,

whose on-click action to to directly take an action and reload the page with acted action.

The move category to dropdown menu is also spontaneously responding menu, i.e. as soon as

the category is selected from the drop down menu, the action of moving the current category

to new selected category takes place. And this table is not a form, i.e. it is just a table

shown in the HTML page. Now here is the scope of improvement in moodle, we can always

store the desired actions and with just one submit button it should take action on all the

stored choices.

To achieve this goal, smanage.php is created, which now contains a form, including

above table and a submit button. This submit button takes an action by redirecting to

actioncat.php, the file in which the actions to be taken on coming input are written. The

form in smanage.php has now three more fields of checkbuttons to input from user. The

three actions now can be done in groups because of using these checkboxes. The three fields

are Move, Delete, and Hide/Show. Now just check the actions among the three for a category

and get the action done. Now the course is recorded from dropdown menu of ’move category

18

to’ and a checkbox ’Move’ need to be selected to ensure the action of moving the courses.

Delete and Hide checkboxes are regular checkboxes and takes the actions on selecting. Hide

is a toggle button with show. Thus a course initially shown will be hidden and vice versa.

Listing 3.2: Code snippet for hiding a category[18]

$strhidcatparam = ’chid’.$category ->id;

$hidecatparam =

optional_param($strhidcatparam , 0,

PARAM_INT);

if ($hidecatparam !== 0) {

if ($category ->visible == 1) {

$hidecat = $category ->id;

$showcat = 0;

}

else {

$showcat = $category ->id;

$hidecat = 0;

}

echo $OUTPUT ->heading($category ->name);

if ($hidecat and confirm_sesskey ()) {

$cattohide = coursecat ::

get($hidecat);

require_capability(

’moodle/category:manage ’,

get_category_or_system_context(

$cattohide ->parent));

$cattohide ->hide ();

echo $OUTPUT ->

notification(get_string(’hidecat ’,

’’,

$category ->name),

’notifysuccess ’);

} else if ($showcat and confirm_sesskey ()) {

$cattoshow = coursecat ::get($showcat);

require_capability(’moodle/category:manage ’,

get_category_or_system_context(

$cattoshow ->parent));

$cattoshow ->show ();

echo $OUTPUT ->notification(

get_string(’showcat ’,

19

’’, $category ->name),

’notifysuccess ’);

}

}

Figure 3.5: The current page for managing the courses, moodle/course/manage.php

Figure 3.6: New file for doing bulk operations for categories, moodle/course/smanage.php

20

Figure 3.7: Summary of actions taken place in bulk for the categories, actioncat.php

Figure 3.8: Categories after the action, by actioncat.php, on page smanage.php

21

If more than one checkboxes are checked, then no action will takes place and the

result page actioncat.php will show the summary as ’No action is being taken, selected more

than one input’. A continue button is added before the footer in actioncat.php, which

redirects to the our category management form. The actioncat.php page also gives the

summary of the actions taken place. These are the only actions needed to be taken over for

categories.

In manage.php, if a category is selected, it’ll be redirected to the same page but with

varied arguments, and thus will now show the list of courses in that category in the table

with three columns as coursename, edit using various single action buttons, then there is a

select menu, selection of courses to move to other category. The Edit actions are settings,

Enrolled users in that course, delete, hide, backup, restore. The most common actions that

are required to change are delete and hide the courses. Now on this page, the table is

enclosed in the form. Thus this form has an action to redirect to the same page and passing

the checked arguments to the same page with a moveto category from dropdown menu. The

dropdown menu is actually a autosubmit button, which takes action as well as it is clicked.

Thus we can conclude that only one action can be takes place at a time.

Now as there is already a form with the specified option, it is not feasible to give

it more than one actions for the current instance. So a new form on the new page was

created, with some static options to store the actions from users about the courses. The

staticoperations page was created, which includes the form with three fields of course name,

delete menu, hide menu. Hide menu is a toggle button between hide and show courses. Now

the actions are stored in the form variable, and are then passed to take actions. The submit

button is added to submit the values of form and transfer these values to a new actionurl,

action.php, which stores the various actions to be acted upon. This page also shows the

summary of action that took place after the actions.

Listing 3.3: Code snippet for deleting a course[17]

if ($dcourseid !== 0) {

if (! can_delete_course($course ->id)) {

echo ’course ’.$course ->fullname.

’ was not deleted due to restricted

permissions ’;

continue;

}

if (! confirm_sesskey ()) {

print_error(’confirmsesskeybad ’, ’error ’);

}

22

add_to_log(SITEID ,

"course", "delete",

"view.php?id=$course ->id",

"$course ->fullname

(ID $course ->id)");

echo $OUTPUT ->heading($course ->fullname);

delete_course($course);

fix_course_sortorder ();

}

Figure 3.9: The current manage.php file, for managing courses

23

Figure 3.10: smanage.php, for courses in a selected category

Figure 3.11: staticoperation.php, the page dedicated to make bulk actions over courses in selected

category

24

Figure 3.12: action.php, the summary page of actions applied to the courses

25

3.3 Grader Report Enhancement for user files

3.3.1 Introduction

Moodle supports different grade reports like User Report, Overview Report and Grader

Report[23]. Grader Report is used in moodle for user activity grading interface through which

a teacher can view and manipulate grades of gradable course activities such assignments,

quizzes etc. It provides features to view and edit grades for different gradable activities of a

course.

Instead of having all these features grader report lacks behind in some operations.

Teachers or course administrators are required to navigate to various pages in order to grade

a student submission and to check files submitted by students that require grading. To view

the student’s submission teacher have to redirect to download submission page, which slows

down their grading process. Bulk grading is not possible with this approach as teacher will

have to navigate a lot throughout.

Grader Report Enhancement is designed to resolve this issue and provides an effi-

cient grading interface for teacher/admin which handles all gradable activities and its sub-

missions. It provides an in-line link for students submissions for particular activity in grader

report so that teachers need not navigate different pages and can view submitted files.

3.3.2 Description

• Problem:

1. To give grade to a specific assignment teacher has to navigate through different web

pages. First go to that assignment page, then click on View/Grade all submissions,

click on Grade Edit Icon from grading table and then it navigates to a different

page which views Submission Status page of a particular user, on this page teacher

can view submitted files and can grant grade for that assignment.

In this way, teacher has to grade all the assignments of users individually. This

slows down the process of grading and makes it very lengthy.

2. There is another option to grade assignments through Grader Report, here teacher

can grade to assignment submissions of all users of a course but to view/get submit-

ted files of particular assignment teacher has to navigate through different pages

or teacher has to follow same procedure as stated above.

• Suggested Solution: To resolve this issue in the grader report an In-line Download link

of files of respective assignment submissions should be added in Grader Report Grading

26

Table.[29]

3.3.3 Implementation

To implement this task we have modified get right rows() function from file moodle/grade/re-

port/grader/lib.php.

moodle/grade/report/grader/lib.php : Function get right rows() Builds and returns

the rows that will make up the right part of the grader report.

We need course module object, context of module to create object of class assign

(Assignment) which is defined in moodle/mod/assign/locallib.php through which we

can access different parameters of assign class. We get object of course module by

using function get coursemodule- from instance() and context from context module::

instance()[19]. After getting object of assignment we get user submissions by calling

function get user submissions() (defined in moodle/mod/assign/locallib.php).

File download : Moodle saves its all submitted files in a different directory other than web

directory for security purposes. So to get location of stored file we can call function

get file storage() (defined in moodle/lib.php). Now to get all submitted files we call

function get- area files().[20]

Now to create in-line download link of submitted file we used function moodle url::make pluginfile url()(defined

in moodle/lib.php), the required parameter for this function are file component, file

area, submission id, context id, file path, file name and forcedownload. Display cre-

ated filelink in the item-cell text. When we click on the links on file name displayed

in grading table cell a popup window pops on screen having options of download and

view file.

Listing 3.4: Getting files and making url for each obtained file[21]

$files = $fs ->get_area_files(

$context ->id ,

’assignsubmission_file ’,

’submission_files ’,

$submission ->id);

foreach($files as $file) {

$filelink = moodle_url ::

make_pluginfile_url($context ->id ,

$file ->get_component (),

27

$file ->get_filearea (),

$submission ->id ,

$file ->get_filepath (),

$file ->get_filename (),

true);

Figure 3.13: Before Grader Report Enhancement

28

Figure 3.14: After Grader Report Enhancement

Figure 3.15: Pop window for Download

29

3.4 Grade Report for Student

3.4.1 Introduction

A user, who is student can see her current grades of a particular course in present Moodle

environment, but is unable to see the grades of all registered courses on one page. To

facilitate this we have added a grade report page for user, which has courses and final grades

that user has got in those courses.

To implement this enhancement, we looked into gradelib.php, which is the library

for gradebook API[22], where the grade grade class is defined which contains the detailed

information for different grade items for users. By using Moodle PDF library[28] option of

exporting this report is made available for the user in PDF format.

3.4.2 Implementation

Brief Description of Implementation :

• Created a new file for fetching courses and their grades at /user/profile/ named grade report.php

• Created export.php file in same folder, to export this report.

• A link is added on profile page of user to grade report file.

grade report.php By using HTML output class, a simple form is written to get the

semester type and semester start date as well as semester end date, by using func-

tion select time(). By using enrol get all users courses() function, list of courses the

user is enrolled is obtained.

Listing 3.5: Function enrol get all users courses()[24]

$usercourses = enrol_get_all_users_courses(

$user ->id , true , NULL ,

’visible DESC ,

sortorder ASC’);

For each of the courses obtained the grade item, which in turn gives the stored grade

object for the user from grade grade class , where the final grade for that user for that

course is calculated.

Listing 3.6: Getting final grade for that course[24]

30

// Get usercourse grade_item

$usercourse_item = grade_item ::

fetch_course_item($usercourse ->id);

// Get the stored grade

$usercourse_grade = new grade_grade(array(

’itemid ’=>$usercourse_item ->id ,

’userid ’=>$user ->id));

$finalgrade = $usercourse_grade ->finalgrade;

To show this content obtained, table element of HTML output class[26] is used.

export.php This file gets the HTML content of grade report and using Moodle PDF library

this content is exported to PDF file as shown below :

Listing 3.7: Generate PDF file and download in browser[25]

//pdf file generation

$doc = new pdf;

$doc ->setPrintHeader(false);

$doc ->setPrintFooter(false);

$doc ->AddPage ();

$doc ->writeHTML($exporthtml ,

true , false ,

false , false);

$downloadfilename = clean_filename(

"user_grade_report.pdf");

$doc ->Output($downloadfilename ,’I’);

31

Figure 3.16: Link for grade report on profile page:

Figure 3.17: Grade report page :

32

Figure 3.18: Pdf export of grade report :

33

Chapter 4

Conclusion and Future Scope

4.1 Conclusion

COEP is one of the institutes which uses Moodle. COEP is using Moodle for almost 5

years. Being that experienced, the Administrators had encountered a need for modification

or new features, which will make COEP Moodle, more easy to use. The tasks which are

completed, are the points of improvement that are suggested by Administrators of COEP

Moodle. The need to make these implementations is because of the current implementation

of these tasks does not meet the satisfaction of Administrators at COEP, who manage COEP

Moodle. Making these improvements had saved a lot of their work and made COEP Moodle

easy to use.

4.2 Future Scope

Apart from making improvements to Moodle by choosing tasks, there is a need to write

an administration module. The Administration Module will consists of automation of all

the academic administrative transactions like credit registration, grade allocation, etc. The

Module will also be able to store student grades for all semesters, her individual information

like name, address, Date of Birth etc. And the most important task of this module will be to

manage all this information at the given instance. As Moodle is now course based system,

to write this administrative module, semester based system has to develop, which seems a

rather tedious job. This is the Future Scope of the Project.

34

Appendix A

Acronyms

Moodle Modular Object Oriented Dynamic Learning Environment

COEP College Of Engineering Pune

IRC Internet Relay Chat

API Application Programming Interface

db Database

langpack Language Package

HTML HyperText Markup Language

XSS Cross Site Scripting

RDBMS Retational Database Management Systems

LDAP LightWeight Directory Access Protocol

LAMP Linux Apache Mysql PHP

35

Appendix B

Installation of Moodle

The installation of moodle on Linux machine can be done in following steps, but before

the setup, environment is to be fixed for moodle. Installation of Linux Apache Mysql

PHP (LAMP) is necessary. As setup is done in Linux environment, installation of Apache2,

mysql5, and php5 can be done using either apt manager, or could be install manually using

dpkg or manual compilation is also possible.

Listing B.1: The apt commands to install all the required packages

// shell

$ sudo apt -get update

$ sudo apt -get install apache2 mysql -server php5

//some complementary packages required are

$ sudo apt -get install libapache2 -mod -php5 \\

libapache2 -mod -auth -mysql php5 -mysql

Now at this point the setup of environment is done.

• Download moodle code from http://download.moodle.org/. Latest stable version is

recommended.

• Move the contents to your www-root directory, here /var/www/. Open Mysql, and

create a database for storing moodle tables.

• Open a browser and open the moodle/index.php file, which should redirect you to

install.php script, and your installation should start.

• Follow the guidelines given to complete the setup.

Once the setup is complete, you are allowed to do experimentation with the newly set website

at your host.

36

http://download.moodle.org/

While publishing this website on your localhost, configure your apache server tentatively to

avoid directory access.

The setup is complete.

37

Bibliography

[1] Moodle official website. http://moodle.org.

[2] Moodle api. http://docs.moodle.org/dev/Core_APIs.

[3] Access api. http://docs.moodle.org/dev/Access_API.

[4] Capabilities array. https://github.com/harshadwaghmare/ImprovementsToMoodle/

blob/master/mod/assign/db/access.php.

[5] String api. http://docs.moodle.org/dev/String_API.

[6] String example. https://github.com/harshadwaghmare/ImprovementsToMoodle/

blob/master/lang/en/moodle.php.

[7] Page api. http://docs.moodle.org/dev/Page_API.

[8] Output api. http://docs.moodle.org/dev/Output_API.

[9] Multiple choice questions. http://docs.moodle.org/25/en/Multiple_Choice_

question_type.

[10] edit simple multichoice form.php. https://github.com/harshadwaghmare/

ImprovementsToMoodle/blob/master/question/type/simple_multichoice/edit_

simple_multichoice_form.php.

[11] Question type multichoice. http://docs.moodle.org/dev/Multiple_Choice_

question_type.

[12] Essay question type. http://docs.moodle.org/25/en/Essay_question_type.

[13] Matching question type. http://docs.moodle.org/25/en/Matching_question_type.

[14] Multichoice question type documentation. http://docs.moodle.org/25/en/

Multiple_Choice_question_type.

38

http://moodle.org
http://docs.moodle.org/dev/Core_APIs
http://docs.moodle.org/dev/Access_API
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/mod/assign/db/access.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/mod/assign/db/access.php
http://docs.moodle.org/dev/String_API
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/lang/en/moodle.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/lang/en/moodle.php
http://docs.moodle.org/dev/Page_API
http://docs.moodle.org/dev/Output_API
http://docs.moodle.org/25/en/Multiple_Choice_question_type
http://docs.moodle.org/25/en/Multiple_Choice_question_type
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/question/type/simple_multichoice/edit_simple_multichoice_form.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/question/type/simple_multichoice/edit_simple_multichoice_form.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/question/type/simple_multichoice/edit_simple_multichoice_form.php
http://docs.moodle.org/dev/Multiple_Choice_question_type
http://docs.moodle.org/dev/Multiple_Choice_question_type
http://docs.moodle.org/25/en/Essay_question_type
http://docs.moodle.org/25/en/Matching_question_type
http://docs.moodle.org/25/en/Multiple_Choice_question_type
http://docs.moodle.org/25/en/Multiple_Choice_question_type

[15] Places to search for lang strings. http://docs.moodle.org/dev/Places_to_search_

for_lang_strings.

[16] smanage.php. https://github.com/harshadwaghmare/ImprovementsToMoodle/

blob/master/course/smanage.php.

[17] action.php uploaded on github. https://github.com/harshadwaghmare/

ImprovementsToMoodle/blob/master/course/action.php.

[18] actioncat.php. https://github.com/harshadwaghmare/ImprovementsToMoodle/

blob/master/course/actioncat.php.

[19] Context module. http://docs.moodle.org/dev/Roles_and_modules#Context.

[20] File api internals. http://docs.moodle.org/dev/File_API_internals#File_

browsing_API.

[21] Code for adding download link. https://github.com/harshadwaghmare/

ImprovementsToMoodle/blob/master/grade/report/grader/lib.php.

[22] Gradebook api. http://docs.moodle.org/dev/Gradebook_API.

[23] Gradebook. http://docs.moodle.org/25/en/Grader_report.

[24] grade report.php. https://github.com/harshadwaghmare/ImprovementsToMoodle/

blob/master/user/profile/grade_report.php.

[25] export.php. https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/

master/user/profile/export.php.

[26] html writer::table. http://docs.moodle.org/dev/Output_API#html_table.

[27] Cross site scripting attacks. http://en.wikipedia.org/wiki/Cross-site_

scripting.

[28] Nicola Asuni. Moodle pdf library. http://www.tcpdf.org/.

[29] Jason Hardin. Activity grading interface specification. http://docs.moodle.org/dev/

Activity_Grading_Interface_Specification, April 2013.

39

http://docs.moodle.org/dev/Places_to_search_for_lang_strings
http://docs.moodle.org/dev/Places_to_search_for_lang_strings
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/course/smanage.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/course/smanage.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/course/action.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/course/action.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/course/actioncat.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/course/actioncat.php
http://docs.moodle.org/dev/Roles_and_modules#Context
http://docs.moodle.org/dev/File_API_internals#File_browsing_API
http://docs.moodle.org/dev/File_API_internals#File_browsing_API
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/grade/report/grader/lib.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/grade/report/grader/lib.php
http://docs.moodle.org/dev/Gradebook_API
http://docs.moodle.org/25/en/Grader_report
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/user/profile/grade_report.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/user/profile/grade_report.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/user/profile/export.php
https://github.com/harshadwaghmare/ImprovementsToMoodle/blob/master/user/profile/export.php
http://docs.moodle.org/dev/Output_API#html_table
http://en.wikipedia.org/wiki/Cross-site_scripting
http://en.wikipedia.org/wiki/Cross-site_scripting
http://www.tcpdf.org/
http://docs.moodle.org/dev/Activity_Grading_Interface_Specification
http://docs.moodle.org/dev/Activity_Grading_Interface_Specification

	List of Figures
	List of Code snippets
	Introduction
	Moodle
	COEP Moodle

	Improvements to Moodle
	Simple Multiple Choice Subplugin
	Static Management of Courses
	Grader Report Enhancement for user files
	Student Gradebook

	Overview Of Moodle API
	Moodle
	Introduction

	Moodle API
	Access API
	String API
	Page API
	OUTPUT API
	Moodlelib API
	Gradebook API
	File API
	Form API

	Moodle Database
	Data Definition API
	Data Manipulation API

	Design And Implementation
	Simple Multiple Choice Questions SubPlugin
	Introduction
	Implementation

	Bulk Manage Courses
	Introduction
	Implementation

	Grader Report Enhancement for user files
	Introduction
	Description
	Implementation

	Grade Report for Student
	Introduction
	Implementation

	Conclusion and Future Scope
	Conclusion
	Future Scope

	Appendix
	Acronyms
	Installation of Moodle

